О том, как научить искусственный интеллект понимать, а не угадывать химию

Наука и жизньНаука

Глаз-синхротрон

Беседу ведёт Наталия Лескова

Богдан Олегович Проценко. Фото Виктора Шаповалова

Рентгеновская спектроскопия поглощения — один из самых мощных инструментов изучения вещества. Однако до сих пор расшифровка спектров напоминала детектив с открытым финалом: учёные тратили месяцы на интерпретацию данных, полагаясь на опыт, интуицию и сложные расчёты. Теперь, благодаря методам, основанным на машинном обучении, этот процесс занимает всего несколько минут.

О том, как научить искусственный интеллект понимать, а не угадывать химию, рассказывает Богдан Проценко, лаборант-исследователь Международного исследовательского института интеллектуальных материалов Южного федерального университета (МИИ ИМ ЮФУ).

— Богдан Олегович, что такое рентгеновская спектроскопия и зачем она нужна?

— Это метод исследования вещества. У физиков, как у детей: чтобы понять, что внутри, надо вещь или сломать, или воздействовать на неё чем-то, и уже по результату, отклику делать выводы. Чтобы понять, что арбуз сладкий, достаточно просто похлопать по нему. А вот когда мы переходим к атомам и молекулам, мельчайшим деталям их строения и функционирования, к тому, как вообще устроена материя вокруг нас и почему она такая, а не какая-то другая — всё становится намного сложнее. Нет там «правды», которую можно увидеть глазами: размеры систем много меньше длины волны видимого света, а энергии процессов много больше. Дифракционный предел (который также называют критерием Рэлея или критерием Аббе) ограничивает минимальные размеры того, что можно увидеть. Но если взять длины волн, сопоставимые с размерами атомов и расстояниями между ними, то мы обойдём этот предел и окажемся в рентгеновском диапазоне.

Когда мы светим на вещество рентгеновским излучением, оно рассеивается либо с сохранением энергии, упруго, как говорят физики, либо неупруго, теряя или приобретая энергию после рассеивания. Первый вариант называется дифракцией — это отличный метод исследовать структуру упорядоченных объектов, например кристаллов. Рассеянное на кристаллической решётке рентгеновское излучение интерферирует, давая максимумы и минимумы на разных углах отражения. Но для этого нужен дальний порядок расположения атомов. А вот второму варианту, собственно рентгеновской спектроскопии, это уже безразлично.

Макет строящейся установки СИЛА (СИнхротрон + ЛАзер). Она объединит в себе сразу две установки: лазер на свободных электронах (с энергией 6 ГэВ) и синхротрон. За макетом — Богдан Проценко. Фото: Фото Назара Чубкова

Мы светим рентгеновским излучением разных энергий на вещество и смотрим, как оно поглощается. Это и есть рентгеновская спектроскопия. По форме зависимости поглощения излучения от его энергии, которая и называется спектром рентгеновского поглощения, можно понять, как в веществе расположены атомы и в каком химическом состоянии они находятся. При буквальном переводе с латыни spectrum — «образ», «душа», что как бы подчёркивает, что спектр отражает некоторые уникальные внутренние особенности объекта.

Идея рентгеновской спектроскопии в общем-то простая: раз рассеяние у нас неупругое, то есть часть излучения поглощается, теряет энергию, — значит, эта энергия на что-то расходуется. А идёт она на то, чтобы выбить электроны в атомах со своих «насиженных» мест и отправить их прочь из атома. Выбитый электрон тратит полученную энергию на то, чтобы преодолеть притяжение атома и затем столкнуться с соседними атомами. Ситуацию, когда излучение выбивает электроны из вещества, мы называем фотоэффектом, выбитый электрон — фотоэлектроном, а такого рода рассеяние на соседях с наложением результатов — интерференцией. В сущности, рентгеновская спектроскопия — это интерференция фотоэлектронов, где интерференционной решёткой служит сама материя. Разного рода интерферометры принадлежат к классу самых точных измерительных приборов, взять хотя бы обсерваторию LIGO, где впервые зафиксировали гравитационные волны.

В микромире между частицами и волнами нет чёткой грани — это так называемый корпускулярно-волновой дуализм. Поэтому на вылетевший электрон в силу квантовых эффектов можно смотреть как на волну, которая рассеивается на соседях, накладывается сама на себя и т. д. Представьте себе, что вы кинули в воду камень, и от его падения пошли волны на воде — вот это как бы выбитый электрон. Волны встречают препятствия, отражаются, эти вторичные отражённые волны накладываются уже на первую волну и друг на друга — получается интересная интерференционная картина. При разных энергиях излучения, то есть если с разной силой «пинать» электрон, интерференционная картина будет разной. Вот почему форма зависимости поглощения от энергии содержит в себе информацию как о локальном окружении атомов, так и об их электронной структуре. Примерно как в аналогии с кругами на воде, только с поправкой на то, что все процессы носят квантовый характер: получается, что фотоэлектрон, будучи одной (!) частицей, вполне прекрасно рассеивается сам на себе и учитывает в момент своего вылета (ещё до рассеяния на соседях, как бы «зная будущее наперёд») все возможные варианты того, как он сможет после вылета рассеяться на соседях. Если вам это кажется захватывающим — поздравляю, вы в шаге от вступления в наш клуб спектроскопистов!

— Что нужно, чтобы получить рентгеновский спектр какого-нибудь соединения?

— Понятное дело, что для рентгеновской спектроскопии нужен собственно рентген, и во всём мире строятся огромные установки для генерации очень яркого и сфокусированного излучения. Это синхротроны и рентгеновские лазеры на свободных электронах — монструозные устройства, способные генерировать излучение в миллионы раз ярче Солнца с микро- и фемтосекундным разрешением… На таких сложных и дорогих устройствах, занимающих, как правило, площадь очень большого здания, находится сразу несколько лабораторий — их называют линиями, или каналами, где каждая лаборатория реализует свою методику исследования. Возможности рентгеновской спектроскопии огромны, потому неудивительно, что существует корреляция между научно-техническим уровнем страны и количеством подобных установок. Учёные обычно пишут заявку на то, чтобы получить возможность провести измерения на одной из них, и, если она выигрывает, приезжают командой, с оборудованием и образцами, и проводят измерения круглосуточно — там каждый час на счету. Экспериментальная работа на таких установках позволяет получать уникальные данные, ценные практически в любой области, от искусствоведения и истории до геологии экзопланет, структурной биологии, катализа и материаловедения. Например, структура подавляющего большинства белков человечеству известна во многом благодаря синхротронам.

— Насколько я знаю, в нашей стране на данный момент всего одна такая установка — в Курчатовском институте.

— Да, это Курчатовский источник синхротронного излучения («КИСИ-Курчатов»). Кроме него есть ещё два ускорителя в Новосибирске (ВЭПП-3 и ВЭПП-4), которые часть времени работают на генерацию синхротронного излучения. Ещё активно строятся или планируются новые, например СКИФ (Сибирский Кольцевой Источник Фотонов), СИЛА (СИнхротрон+ЛАзер), РИФ и другие. Думаю, нам в Ростове один, пусть и небольшой ускоритель, тоже бы не помешал.

— Какие всё это решает фундаментальные задачи?

— Спектроскопия рентгеновского поглощения — это один из важнейших инструментов, необходимых для того, чтобы узнать, как на самом деле устроено вещество вокруг нас. Иными словами, понять на атомарном уровне устройство материи, какая она, почему и как функционирует.

Причём ограничений на состояние образца нет, рентгеновская спектроскопия применима для любого агрегатного состояния вещества и может применяться прямо в процессе работы (в этом помогает проникающая способность рентгена), например, можно исследовать, как деградируют катализаторы прямо в ходе реальной реакции или как стареют литий-ионные батареи в циклах зарядки-разрядки. Её используют и для изучения биологических объектов (в частности, металлических центров в белках), для диагностики конструкционных и функциональных материалов, в том числе для микроэлектроники.

Фото Назара Чубкова

— Что представляет собой ваша разработка?

— Наша разработка — это метод для быстрого и точного анализа данных спектроскопии рентгеновского поглощения, основанный на искусственном интеллекте или машинном обучении. Мы с вами говорили про то, как много полезной информации содержится в рентгеновских спектрах и как их измеряют, но ни слова про то, как их, собственно, анализируют. А это очень непросто. Мы не видим отдельные атомы и их состояние, но видим некоторую сложную общую картину. Как будто бы это какая-то тень, отбрасываемая объектом, но не сам объект. А как восстановить объект по отбрасываемой им тени? Если структура однозначно определяет спектр, то спектр не всегда однозначно определяет структуру. В математике даже есть термин для такого рода задач — некорректные обратные задачи. Наша разработка посвящена тому, как решить эту некорректную задачу: с помощью машинного обучения построить алгоритм получения структуры из спектра.

У спектра рентгеновского поглощения есть две основные области: тонкая структура вблизи края поглощения (XANES) и протяжённая тонкая структура поглощения после края (EXAFS). Последняя, поскольку в ней доминирует рассеяние на соседях, позволяет исследователь в большей степени геометрические параметры (то, как расположены атомы), и для неё существует формула, подгоняя которую к данным, учёные получают структурные параметры вещества. А вот для XANES, где есть вклад в рассеяние и геометрии локального окружения и электронного состояния атомов, такой формулы нет. И не будет никогда. Так уж устроена наука, что только в школе всё понятно и для всего есть уравнение, решаемое аналитически, в жизни и науке, увы, не так. Перед нами ларец с ценнейшей информацией, но ключа у нас от него нет… Потому исследователям остаётся либо с весьма ограниченной точностью численно моделировать простейшие системы на суперкомпьютерах, чтобы понять какие-то закономерности, либо сравнивать неизвестную систему с известными.

Спектр каждого материала уникален, и его особенности — как отпечаток пальца человека. Поэтому этот метод так и называется — «метод отпечатка пальца». Исследователи берут библиотеку спектров веществ-эталонов и пристально вглядываются в то, что у этих спектров есть общего и различного с неизвестным спектром. Хотя звучит это не очень точно, надёжно и воспроизводимо… Иными словами, исследователи потратили огромные усилия и деньги, чтобы построить синхротроны, провести на них измерения, — и не могут из этих данных извлечь полезную информацию. Однако давайте приглядимся к последнему методу внимательнее — в нём мы собираем выборку, или библиотеку данных, и на её основе ищем закономерности, воспользовавшись которыми, пытаемся сделать вывод или предсказание для новых данных. Ничего не напоминает? Да это же просто пресловутое машинное обучение, раздел столь популярного ныне искусственного интеллекта!

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Кто вы, мистер Освальд? Кто вы, мистер Освальд?

В биографии Ли Харви Освальда всё ещё очень много белых пятен и мифов

Дилетант
Вынужденный зарабатывать Вынужденный зарабатывать

Сбербанк сохраняет целевое значение рентабельности капитала за 2025 г. свыше 22%

Ведомости
Крым: как устроить человеческое житьё Крым: как устроить человеческое житьё

Летом 1920 года в Крыму царил осторожный оптимизм

Дилетант
Банановые перспективы российских субтропиков Банановые перспективы российских субтропиков

Инвесторы хотят импортозаместить экзотические фрукты

Агроинвестор
Заполняя белые места на карте Заполняя белые места на карте

Некоторые ключевые вехи экспедиционной истории РГО

Вокруг света
Летают ли авиалайнеры над Северным полюсом: да, и это стоит сделать хотя бы раз в жизни Летают ли авиалайнеры над Северным полюсом: да, и это стоит сделать хотя бы раз в жизни

Почему летать через Северный полюс до сих пор рискованно

ТехИнсайдер
Катапульта, побег в СССР и месть юнги: великая и странная история парохода Bremen Катапульта, побег в СССР и месть юнги: великая и странная история парохода Bremen

От металлургии до гидродинамики: история парохода Bremen

ТехИнсайдер
От Севастополя до Галлиполи От Севастополя до Галлиполи

«Что для вечности временность гибели?» — духовное положение Белых в изгнании

Дилетант
В ответе за тех, в кого вложили В ответе за тех, в кого вложили

Новый кодекс ЦБ поможет институциональным инвесторам активнее влиять на компании

Ведомости
«Тренд золотых девочек»: как женщины ищут компаньонок для совместной жизни на пенсии «Тренд золотых девочек»: как женщины ищут компаньонок для совместной жизни на пенсии

Женские коммуны вместо домов престарелых — как женщины борются с одиночеством

Forbes
Доска объявлений: много ли теннисисты зарабатывают на спонсорских нашивках Доска объявлений: много ли теннисисты зарабатывают на спонсорских нашивках

Почему теннисисты не могут выглядеть, как облепленные логотипами гонщики

Forbes
Антон Яковлев: Нам удалось доказать, что мы не разрушители, а созидатели Антон Яковлев: Нам удалось доказать, что мы не разрушители, а созидатели

Антон Яковлев — о преемстве в Театре Гоголя, новых целях и усталости от иронии

Ведомости
«Я понял, что хочу работать не с туристами, а с горожанами». Создатель «Глазами инженера»  о том, как заработать 200 млн руб. на экскурсиях «Я понял, что хочу работать не с туристами, а с горожанами». Создатель «Глазами инженера»  о том, как заработать 200 млн руб. на экскурсиях

Создатель «Глазами инженера» — о том, как выгодно заниматься любимым делом

Inc.
Сусанна Георгиевская Сусанна Георгиевская

Сусанна Георгиевская была писателем редкой силы и редкой судьбы

Дилетант
Здоровье как актив: зачем частным клиникам превентивная медицина Здоровье как актив: зачем частным клиникам превентивная медицина

Почему в частных клиниках развивается персонализированный подход

Forbes
Вьетнамский вклад в импортозамещение Вьетнамский вклад в импортозамещение

Концерн TH Group открыл завод по переработке молока в Калужской области

Агроинвестор
Продажи в офлайне: 8 приемов коммуникации с клиентом Продажи в офлайне: 8 приемов коммуникации с клиентом

Gростые техники продаж, которые помогают вести доверительный диалог

Inc.
«Труды и бессонные ночи»: как женщины добивались права работать адвокатами «Труды и бессонные ночи»: как женщины добивались права работать адвокатами

Как женщины в Российской империи и Советском Союзе меняли законы

Forbes
Нарыли контент Нарыли контент

Звездные фермеры, которые учат выращивать урожай и разводить скот

RR Люкс.Личности.Бизнес.
Хидео Кодзима Хидео Кодзима

Правила жизни геймдизайнера Хидео Кодзимы

Правила жизни
Ученые превратили растительные отходы в топливо для самолетов Ученые превратили растительные отходы в топливо для самолетов

Технологию производства авиатоплива из биомассы создали в РГУ нефти и газа

ТехИнсайдер
Раскусить преступника: 10 самых сильных криминалистов в истории Раскусить преступника: 10 самых сильных криминалистов в истории

Личности, которым удалось войти в историю как гениям криминалистики

ТехИнсайдер
От Трампа до Дидди: как именитые судебные художницы работали на громких процессах От Трампа до Дидди: как именитые судебные художницы работали на громких процессах

Судебные художницы: истоки профессии и самые известные процессы

Forbes
Елена Царева: «Препятствий для выхода наших вин на международную арену нет» Елена Царева: «Препятствий для выхода наших вин на международную арену нет»

О развитии виноделия в России, новых нишах и росте спроса на безалкогольное вино

Ведомости
Правила порядка Правила порядка

Как научить детей поддерживать порядок в своей комнате, не тратя на это часы

Новый очаг
МСП вышло на качественно новый уровень развития МСП вышло на качественно новый уровень развития

Александр Новак — о том, как будет расти средний и малый бизнес

Эксперт
Продавцы воздуха. Как бизнес экономит на потребителях и при чем тут шринкфляция Продавцы воздуха. Как бизнес экономит на потребителях и при чем тут шринкфляция

Где граница между маркетинговой хитростью и нарушением доверия покупателей?

Inc.
Тюрьма народов Тюрьма народов

Как побег из Алькатраса лишь укрепил имидж легендарной тюрьмы

Дилетант
Вертикальный нетворкинг. Новые правила общения в лифтах Вертикальный нетворкинг. Новые правила общения в лифтах

Почему современный лифт — это больше чем транспорт

Inc.
Четыре всадника прогресса Четыре всадника прогресса

Футуролог — о неизбежности ИИ, крахе фармы, космической платине и энергетики

ТехИнсайдер
Открыть в приложении