Ограничены ли нейросети в своих возможностях?

ЭкспертHi-Tech

Может ли искусственный интеллект предсказывать будущее

Нейросети ограничены потребностью в больших данных, способностями к концептуализации и непредсказуемостью людей

Варвара Гузий, Виталий Лейбин

Искусственный интеллект поможет предсказывать вероятное будущее, но не избавит людей от необходимости осознавать себя и делать свой выбор

По миру стремительно распространяется волна радостных и одновременно панических публикаций относительно возможностей искусственного интеллекта. Причиной столь бурной реакции СМИ стал запуск нейросетевой языковой модели ChatGPT-4, которая заметно превосходит все предыдущие версии. ChatGPT, конечно, не разум, подобный человеческому, — это именно языковая, разговорная, хотя и очень большая мультимодальная модель. Бота обучали на текстах естественных человеческих языков (и некоторых формальных, в том числе математики и программирования), и теперь на основе этого опыта он может почти моментально генерировать сообщения разного качества и разной степени осмысленности.

Новый инструмент оказался не только отличным помощником в написании рефератов и решении несложных задач, но и удивительно интересным собеседником. Как результат, в мире развернулась дискуссия о возможностях «сильного» («настоящего», «общего») ИИ. Так, группа исследователей из Microsoft выложила в открытый доступ статью «Проблески общего искусственного интеллекта: первые эксперименты с GPT-4»), в которой ученые утверждают, что чат-бот демонстрировал признаки способности к абстрагированию, понимание человеческих эмоций и многое другое.

Известный футуролог Юваль Харари выступил в New York Times с обращением ко всем людям доброй воли: «В “Терминаторе” роботы бегают по улицам и стреляют в людей. “Матрица” предполагала, что для получения полного контроля над человеческим обществом ИИ должен напрямую подключить наш мозг к компьютерной сети. Но на самом деле, овладев языком, ИИ будет иметь все, что ему нужно, чтобы держать нас в мире иллюзий, подобном матрице. Ни в кого не стреляя и не имплантируя чипы в наш мозг. А если потребуется стрельба, ИИ может заставить людей нажать на курок, просто рассказав нам правильную историю».

Действительно, в практическом смысле не так уж важно, говорит искусственный интеллект что-то осмысленное или его речь — это всего лишь хорошо подобранные слова, если такие высказывания результативны. С разговорным ИИ и вправду становится все удобнее работать и приятнее общаться. Ниже мы попробуем объективно посмотреть на прогресс и ограничения ИИ на современном уровне его развития.

Нейросеть предсказывает себя

В научных кругах оживленную дискуссию вызвал препринт международной группы ученых «Предсказание будущего ИИ с ИИ: высококачественное предсказание на экспоненциально растущей сети знаний» (“Predicting the Future of AI with AI: High-quality link prediction in an exponentially growing knowledge network”), в котором описывались итоги эксперимента по использованию искусственного интеллекта для предсказания собственного будущего. Исследователи «скормили» 10 разным статистическим и нейросетевым моделям (в том числе предыдущей версии самой большой разговорной нейросетевой модели GPT-3) около 100 тыс. научных статей об ИИ за прошлые десятилетия — с 1991 года, получили машинный прогноз на ближайшие годы и сравнили результаты с реальностью. Выяснилось, что искусственный интеллект выдал результат с точностью 99%.

Будущее, которое рассчитал ИИ, было представлено в форме новых связей между научными категориями и темами научных работ. Например, если раньше ни в одной работе не встречалось понятий «предсказание погоды» и «генеративная нейросеть», а сейчас они появились, то это и есть свидетельство развития науки об искусственном интеллекте — новая тема. Именно такие пересечения научных тематик предсказал ИИ. Это не просто тест возможностей искусственного интеллекта — это очень практичный результат. Дело в том, что ни один ученый не в силах отслеживать весь поток научных работ даже по своей узкой теме, а самое интересное происходит на пересечении разных областей знания. И если нейросеть будет предсказывать самые перспективные направления исследований (не только в области ИИ), это может ускорить прогресс науки и технологий.

Но наилучшие результаты в исследовании показали не нейросети, которые выполняли задачи полностью самостоятельно, как GPT, а программы, совмещающие возможности нейросети и созданной с помощью «ручного труда» человека классификации научных тем (более 64 тыс. категорий, их связи и иерархии). То есть пара «человек, который концептуализирует изучаемый предмет, плюс нейросеть, которая быстро читает и учится на тысячах текстов» вместе сильнее, чем поодиночке. Нейросети и сами могут строить дерево концепций, карту главных слов выбранной области, но пока нуждаются в помощи оператора в части логичности и исправления ошибок.

Искусственный интеллект удивительно продуктивен во всех сферах, где накоплено большое количество данных, и может сам их порождать — например, предсказывая новые направления исследований, новые лекарства, структуру и свойства белков и многое другое. Но на нынешнем уровне развития нейросеть сталкивается с рядом сложностей. Создатель платформы российского разговорного ИИ DeepPavlov Михаил Бурцев выделяет шесть таких проблем (см. статью «Искусственный интеллект: что он может и чего не может», «Эксперт» № 49 за 2021 год): обучение на малом числе примеров, катастрофическое забывание, рассуждения, здравый смысл, объяснимость и целенаправленность. Все эти трудности не выглядят принципиально непреодолимыми; по крайней мере, ученые и разработчики над этим увлеченно думают. Часть проблем постепенно решается в мультимодальных моделях: например, когда разговорный ИИ соединяется с картиночным, недостаток больших данных компенсируется за счет концепций, которые картиночный ИИ берет у языкового, — в итоге нейросеть сможет нарисовать даже то, о чем не знает.

Авторы работы о предсказании будущего ИИ говорят о путях развития, в том числе о необходимости создания моделей, которые будут сами строить дерево концепций — не просто соединять известные концепции, но и предлагать новые, а также понимать и обобщать знание, когда оно не укладывается в известные категории и термины.

Будущее людей и машин

Но возможно ли, что нейросети не только сумеют увидеть логику развития научной мысли, но и смогут прогнозировать будущее человечества в широком смысле — в области политики и экономики? Этот вопрос мы обсудили с заведующим кафедрой вычислительной техники НГТУ НЭТИ, экспертом Новосибирского представительства центра компетенций Национальной технологической инициативы (НТИ) «Технологии доверенного взаимодействия» Александром Якименко.

Заведующий кафедрой вычислительной техники НГТУ Александр Якименко

— Начнем, наверное, с главного: способен ли искусственный интеллект предсказать какие-либо события?

— В теории — да, способен. На практике все гораздо сложнее. ИИ не то чтобы дает точный прогноз — он ищет в ретроспективе за предшествующие 20–50 лет последовательности, которые приводят к определенным результатам. Например, если дневная температура весной становится выше плюс пяти градусов Цельсия, снег начинает активно таять и уровень воды в реке поднимается. Провалы в мощности станка способствуют увеличению процента брака и выходу оборудования из строя. Значит, рост объема брака может указывать на просадку в мощности и скорую поломку станка, а зафиксированная просадка по мощности помогает вовремя определить бракованную продукцию и предотвратить поломку оборудования. Но для таких прогнозов ИИ необходимы системы сбора и хранения данных. Если мы говорим о перспективе, скажем, в два-три года, то информация потребуется минимум за 20 лет.

— А чем это вызвано?

— Есть несколько причин. Во-первых, стоимость таких систем. Во-вторых, мир, который стремительно меняется. Возможно, процессы годичной давности уже никогда не повторятся, соответственно, система не сможет найти паттерны, которые приведут к наступлению события. В-третьих, всеобъемлющая цифровизация только наступает, и нужной ретроспективы данных у нас попросту нет. Поэтому на предыдущий вопрос можно ответить и так: «Да, ИИ способен предсказывать будущее, но стоит ли это вложенных средств?»

— А как насчет менее долгосрочных прогнозов?

— Возьмем годовой цикл — там речь может идти о климатических катаклизмах или сезонных колебаниях погоды (например, ИИ может заранее предсказать наводнение или обильный снегопад). Еще больше практических приложений в краткосрочном прогнозировании: это и упомянутые станки, и другие технические процессы на производстве. Сюда же можно отнести и прогнозирование покупательной способности или спроса на конкретный вид продукции. Вариантов много. Поэтому сейчас все более популярной становится профессия аналитика данных (data scientist), без которых невозможно построение адекватной модели для любого прогноза. И конечно, программисты — без них совсем никуда.

— Чем отличаются старые и новые ИИ?

— Все новое — это хорошо забытое старое, а в данном случае не забытое, а отложенное. Самые первые гипотезы и идеи, касающиеся искусственного интеллекта, выдвигались еще в 1940-х годах. Но их реализация на вычислительных устройствах того времени была попросту невозможна, поэтому многие теории воспринимались как сказки. В 1990-х годах, когда вычислительная техника уже была способна хранить большие объемы информации и обрабатывать их в относительно короткие сроки, об этих идеях вспомнили и начали воплощать в жизнь. Разумеется, новые алгоритмы тоже появляются. Их принципиальное отличие — в возможности параллельной обработки событий, что существенно повышает скорость работы и точность прогноза.

— Где они используются в настоящий момент?

— Сферы применения таких технологий обширны: социальная (чат-боты, виртуальные помощники, рекомендательные системы), экономическая (инвестиционные прогнозы, скачки курсов валют, покупательная способность, сезонный спрос), климатическая (прогноз погоды, стихийных бедствий, урожайности) и другие. Например, сейчас очень распространены сервисы, которые на основе действий пользователя в интернете (запросы в браузере, время фокусировки на определенном контенте, досматривание до конца) дают рекомендации, какие товары и услуги стоит ему предложить. Эффективность таких систем достаточно высока даже несмотря на то, что на основе прогнозов совершается менее 10 процентов покупок.

— Можно поподробнее насчет экономики?

— Одна из популярных разработок — инструмент прогнозирования котировок акций, который позволяет зарабатывать на разнице в их цене. Пока сервис еще очень сырой, но при сумме вложений 30–50 тысяч рублей в стабильной обстановке позволяет получать до 3000 рублей в месяц. Однако во время глобальных мировых событий нейросетям верить нельзя: такие происшествия, как правило, единичны, и обучить ИИ на них практически невозможно. Зато рутинная однообразная работа уже сейчас отдана на откуп искусственному интеллекту: это позволяет высвободить большие человеческие ресурсы. Постепенно класс задач, которые будет решать ИИ, вырастет, но нестандартными, неповторяющимися кейсами все равно придется заниматься специалистам из крови и плоти.

— Какие положительные и отрицательные стороны искусственного интеллекта можно еще выделить?

— Хорошо обученный ИИ способен замечать такие зависимости, которые человек никогда не обнаружит. К сожалению, это не только плюс, но и минус, особенно если речь идет о безопасности: нейросеть можно натренировать на поиск уязвимостей, лазеек в нормативной документации, способов обмана. Как следствие, мы получаем бесконечное соревнование добра и зла: одни совершенствуют защиту, другие — нападение. ИИ просто инструмент, а в какие руки он попадет, уже другой вопрос.

— А на основе каких баз данных ИИ вообще может делать какие-либо предсказания?

— Искусственный интеллект обрабатывает связанную с событием информацию, именно поэтому получить прогноз события, которого ранее не происходило, невозможно. Процесс составления прогноза — это, по сути, определение наиболее вероятного исхода. В зависимости от алгоритма в программу могут вводиться случайные величины, которые не дают ИИ все время приходить к одному и тому же решению (в математике это называется локальным экстремумом). Отсюда следует, что чем чище и достовернее данные для нейросети, тем адекватнее и точнее будет ее прогноз.

Идеальный вариант — если данные собираются без вмешательства человека: определенные события фиксируются автоматически с заданной частотой (кстати, частота тоже влияет на точность прогноза). Но, собирая информацию, к примеру, раз в сутки, практически нереально спрогнозировать событие длительностью, скажем, один час. Есть такой фильм с Беном Аффлеком в главной роли — «Час расплаты». В нем, на мой взгляд, очень хорошо показаны последствия использования ИИ для получения предсказаний. Знать будущее нужно лишь для того, чтобы не совершать ошибки в настоящем.

— Расскажите, пожалуйста, о таких разработках у нас и за рубежом.

— Отечественных и мировых прогностических нейросетей довольно много. В основном это проекты крупных ITкомпаний: «Яндекса», Google, Amazon и других, которые могут себе позволить содержать огромные вычислительные ресурсы для создания инфраструктуры ИИ. Но чаще используются мелкие решения, нацеленные на конкретную задачу: например, информация об уровне паводковых вод выше по течению от прогнозируемого места позволяет с точностью до часа предсказать, когда придет высокая вода. Такая система используется на Новосибирской ГЭС. Благодаря ей дачи, которые расположены на берегах Оби, в последнее время затапливает значительно реже, а суда могут не бояться обмеления русла. Еще одна система, тоже связанная с погодными условиями, позволяет прогнозировать вспышки тех или иных инфекционных заболеваний. С виртуальными помощниками сталкивались практически все: они защищают вас от назойливых звонков, могут ответить, когда вы заняты, и тому подобное. У таких разработок высока социальная ценность, поскольку их можно применять в сфере образования и при сопровождении людей с ограничениями по здоровью.

Человечество может выдохнуть?

— Сколько, на ваш взгляд, понадобится времени для обучения ИИ?

— Есть очень хорошая фраза: «В начале ты полжизни учишься, потом полжизни переучиваешься». Чем больше информации, тем она разнороднее; чем долгосрочнее необходим прогноз, чем больше и сложнее зависимости между данными, тем больше требуется времени на обучение нейросети. Стоит поменять всего одну вводную, и процесс обучения придется начинать сначала. Сейчас уже появляются подходы, которые позволяют искусственному интеллекту работать и обучаться одновременно, но такая модель накладывает существенные ограничения на подаваемые на вход данные, иначе можно очень сильно потерять в точности прогноза.

— Есть ли смысл доверять таким технологиям, если предсказание будущего все же станет реальностью?

— В фильме «Эффект бабочки» показано, сколь значимым может быть изменение даже крохотной детали. Чтобы дать точный прогноз, необходимо, чтобы каждое наше действие было заранее известно, а ведь предсказать поведение человека или группы людей практически невозможно. Природу тоже необходимо учитывать. Но, с другой стороны, еще сто лет назад никто и представить себе не мог сотовые телефоны или автомобили, едущие со скоростью более трехсот километров в час. С развитием технологий и открытием новых законов у человечества появляется все больше возможностей.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Италия: резко вправо Италия: резко вправо

Победа итальянских правых партий сулит множество перемен

Эксперт
Физики создали самого тяжелого кота Шрёдингера за всю историю Физики создали самого тяжелого кота Шрёдингера за всю историю

Недавно ученые создали самого тяжелого кота Шредингера на сегодняшний день

ТехИнсайдер
Кнопка перезагрузки пока не нажата Кнопка перезагрузки пока не нажата

Новая программа: ставка на частные инициативы

Эксперт
«Я впервые произнесла это слово»: как сложилась судьба женщины, сказавшей, что в СССР секса нет «Я впервые произнесла это слово»: как сложилась судьба женщины, сказавшей, что в СССР секса нет

«В СССР секса нет» — есть ли хоть кто-то в России, который не слышал эту фразу?

VOICE
Деревянный монолит вместо бетонного Деревянный монолит вместо бетонного

АФК «Система» выводит на рынок девелопмента многоэтажные деревянные дома

Эксперт
Романтическая, страховочная, протестная: 6 видов измен — психологическая типология Романтическая, страховочная, протестная: 6 видов измен — психологическая типология

Измены случаются по разным причинам и сопровождаются разными переживаниями

Psychologies
Ой, всё: почему США признали потолок цен на нефть бесполезным Ой, всё: почему США признали потолок цен на нефть бесполезным

Российский нефтегаз показал чудо адаптации к санкциям

Монокль
«Планка» не поможет: 7 бесполезных упражнений для восстановления после родов «Планка» не поможет: 7 бесполезных упражнений для восстановления после родов

Рассказываем, на что не стоит делать ставку новоиспеченной маме

VOICE
Идеология многонационального народа Идеология многонационального народа

Ценностные основы идеологии закреплены в обновленной Конституции России

Эксперт
Как развивать отношения, если вы привыкли жить в одиночестве: 5 советов холостякам Как развивать отношения, если вы привыкли жить в одиночестве: 5 советов холостякам

Как впустить в свою жизнь (и даже дом) партнера? Как договориться с собой?

Psychologies
У выращеного в пробирке мяса появится жир, улучшающий вкус и текстуру У выращеного в пробирке мяса появится жир, улучшающий вкус и текстуру

Ученые разработали способ выращивания жира, похожего на жир животных

ТехИнсайдер
Аглая Шиловская: «Семья в ряду моих ценностей всегда на первом месте» Аглая Шиловская: «Семья в ряду моих ценностей всегда на первом месте»

Аглая Шиловская рассказала о секретах своей красоты, здоровья и оптимизма

Здоровье
На краю кутерьмы На краю кутерьмы

«Кроличья нора»: Кифер Сазерленд в параноидальном триллере в духе 1970-х

Weekend
Почти за те же деньги. Jeep Wrangler & УАЗ «Хантер» Почти за те же деньги. Jeep Wrangler & УАЗ «Хантер»

Американская классика vs не менее классическая отечественная продукция

4x4 Club
Семь вещей, которые раздражают нас в автомобиле Семь вещей, которые раздражают нас в автомобиле

Низкопрофильные шины, сенсорные панели и многое другое: что раздражает водителей

4x4 Club
Палеогенетики прочитали ДНК Балто Палеогенетики прочитали ДНК Балто

Балто оказался генетически ближе всего к беспородным аляскинским ездовым собакам

N+1
Если бы не цена... Пятое поколение Toyota RAV4 Если бы не цена... Пятое поколение Toyota RAV4

Ездить на Toyota RAV4 — это управлять мечтой

4x4 Club
Сколько чувств на самом деле необходимы человеку Сколько чувств на самом деле необходимы человеку

У любого могут возникнуть сомнения в том, что наши чувства ограничиваются пятью

ТехИнсайдер
Контрастный душ, завтрак и перерыв: 16 правил стройности — позаботьтесь о себе Контрастный душ, завтрак и перерыв: 16 правил стройности — позаботьтесь о себе

Полезные привычки полезны не только для фигуры, но и для психического здоровья

Psychologies
Эффект плато Эффект плато

6 причин, из-за которых вес стоит на месте, и как это исправить

Лиза
Повернуть время вспять Повернуть время вспять

Как подольше продлить молодость и сохранить красоту лица и тела?

Лиза
Невеста была в черном такси Невеста была в черном такси

«Мерзлая земля»: Светлана Ходченкова в детективе Оксаны Карас

Weekend
«Вишневый сад» по-испански. О победителе Берлинского кинофестиваля «Земля Алькаррас» «Вишневый сад» по-испански. О победителе Берлинского кинофестиваля «Земля Алькаррас»

О важных изменениях устройства цивилизации — в фильме «Земля Алькаррас»

СНОБ
Война тосола с антифризом. Что, когда и как доливать Война тосола с антифризом. Что, когда и как доливать

Какое масло заливать? Можно ли смешивать антифриз G12 и G12++?

4x4 Club
Я вас услышала Я вас услышала

Как мозг учится распознавать звуки через кохлеарный имплантат

N+1
Гормон победителей дофамин: почему мы от него зависим Гормон победителей дофамин: почему мы от него зависим

Как использовать дофамин себе во благо и не попасть в ловушку зависимости

Правила жизни
Как обустроить квартиру с помощью российских производителей Как обустроить квартиру с помощью российских производителей

Локальные товары, которые отвечают современным мебельным тенденциям

СНОБ
«Когда вытаскиваешь наружу свои боли, начинаешь с ними справляться» «Когда вытаскиваешь наружу свои боли, начинаешь с ними справляться»

Театр лечит — уверена актриса Марьяна Спивак

OK!
Стоп, снято! 5 познавательных книг о кинорежиссуре Стоп, снято! 5 познавательных книг о кинорежиссуре

5 отличных книг о кино, написанных профессионалами своего дела

ТехИнсайдер
Ближний морской бой: как возникла и развивалась практика брать вражеские суда на абордаж Ближний морской бой: как возникла и развивалась практика брать вражеские суда на абордаж

«Морская пехота» консула Гая Дуилия и пираты Генри Моргана воевали одинаково

Вокруг света
Открыть в приложении