Что такое умные полимеры и почему их использование в медицине так важно?

Наука и жизньНаука

Умные полимеры в медицине

Кандидат химических наук Анна Ефимова, химический факультет МГУ им. М. В. Ломоносова.

Искусственные мышечные волокна из электроактивного полимерного материала для робототехники. Волокна сжимаются и разжимаются под действием электрического тока. Фото: Токийский технологический институт

В последние десятилетия стремительно развивается научная область, связанная с разработкой нового поколения полимерных материалов, получивших название умных, или интеллектуальных. Их свойства можно изменять небольшим воздействием физических, химических, биологических и иных стимулов.

Но давайте вспомним, что же такое полимеры. Это вещества, состоящие из макромолекул, которые, в свою очередь, построены из многократно повторяющихся мономерных звеньев. У макромолекул высокая молекулярная масса, а их размеры превосходят размеры «обычных» молекул в тысячи раз. Среди наиболее длинных из них — природные молекулы ДНК, число звеньев в цепи которых может достигать 109—1010. Свойства полимеров обусловлены большой длиной, цепным строением и гибкостью составляющих их макромолекул.

На основе умных полимеров получают материалы, запрограммированные на определённый отклик на внешнее воздействие. Внешними стимулами, резко изменяющими свойства полимеров, могут быть температура, рН, влажность, электрические или магнитные поля, облучение и др. Чтобы вызвать существенные изменения свойств материала, обычно достаточно незначительных изменений в окружающей среде.

Примеры умных полимеров — стимул-чувствительные материалы для биомедицинской инженерии, электрохромные материалы* для изготовления жидкокристаллических дисплеев, краска для автомобилей, «залечивающая» царапины. К числу умных материалов относятся и связующие почв, основу которых составляют поликомплексы с участием гидрогелей (сетчатых полимеров) и полимеров линейного строения. На поверхности почвы такой комплекс формирует защитную плёнку, препятствующую развитию водной и ветровой эрозии. При этом частицы гидрогеля можно использовать в качестве резервуара для биоактивных веществ, стимулирующих рост растений. Разработаны чувствительные полимерные сенсоры, сигнализирующие о присутствии вредных веществ изменением цвета. Примеры таких сенсоров — полимерные плёнки из материала, чувствительного к нитритам, под действием которых он меняет цвет, или же — полимер с порами, повторяющими форму молекул бензапирена, благодаря чему бензапирен легко проникает в полимерную матрицу, что сопровождается изменением цвета.

Но наиболее широко умные полимеры применяются в медицине. Их используют в малоинвазивной хирургии, 3D-биопечати, для восстановления тканей, создания биосенсоров, систем для контролируемой доставки лекарств, волокнистых каркасов тканеинженерных конструкций. На основе интеллектуальных полимеров разрабатывают материалы для замены сердечного клапана и кровеносных сосудов, персонализированные биомедицинские продукты.

Конечно, полимерные материалы, находящиеся в контакте с биологическими жидкостями, должны быть биосовместимыми, то есть сохранять функциональные свойства в течение предусмотренного срока эксплуатации, не вызывая при этом существенных негативных (воспалительных и аллергических) реакций в организме. Также они не должны оказывать токсическое действие на организм, провоцировать развитие инфекции. В некоторых случаях полимер должен быть биодеградируемым, например, если речь идёт о шовных материалах для хирургии, лекарственных препаратах с контролируемым процессом высвобождения биоактивных веществ, имплантатах.

Высвобождение лекарства из полимерной матрицы под действием стимула. В числе стимулов могут быть температура окружающей среды, изменение рН, облучение светом, действие магнитного или электрического поля. Рисунки Анны Ефимовой

Одно из частых применений интеллектуальных полимеров в биомедицине — направленная доставка лекарств. Под воздействием того или иного стимула полимеры контролируемо высвобождают лекарство в определённом месте организма. В итоге препарат доставляется более точно и эффективно, а заодно предотвращается его нежелательное воздействие на здоровые ткани и клетки. Стимулом для выделения лекарственного препарата может быть отклонение от нормы температуры тела или рН внутренней среды организма, изменения которых, как правило, сопровождают патологические процессы.

pH-чувствительные полимеры содержат способные к ионизации (ионогенные) группы. Это кислотные (например, карбоксильные или сульфогруппы) или основные группы (аминогруппы). При изменении pH среды и, соответственно, степени ионизации групп полимера существенно изменяются его свойства: конформация (форма), размер и растворимость. рН-чувствительные гидрогели представляют собой трёхмерную сеть из полимерных цепей, химически или физически связанных друг с другом. Они не растворяются, а лишь набухают в водных средах. Это свойство гидрогелей может быть использовано для создания различных тест-систем и получения контейнеров для доставки биоактивных веществ, высвобождающих лекарства при определённых значениях водородного показателя. Гидрогели не только выполняют функцию матрицы, которая дозированно высвобождает лекарство при определённых условиях, но и служат защитной оболочкой.

Изменение размера гидрогеля при изменении рН (кислотности) среды. Рисунки Анны Ефимовой

Например, создано саморегулирующееся лекарство для борьбы с сахарным диабетом. рН-чувствительный гидрогель, содержащий слабоосновные группы, насыщают инсулином, а затем инкапсулируют фермент глюкозооксидазу. Когда глюкоза, содержащаяся в крови, попадает в гидрогель, фермент окисляет её до глюконовой кислоты, которая вызывает ионизацию и, соответственно, набухание геля. Набухание геля сопровождается высвобождением инсулина. Чем больше глюкозы попадает в гидрогель, тем больше инсулина из него выделяется. То есть гидрогель в данном случае выступает в роли искусственной поджелудочной железы, выделяя инсулин в ответ на изменения концентрации глюкозы в крови.

Оболочки таблеток и капсул изготавливают из рН-чувствительных полимерных гелей на основе производных целлюлозы и метакриловой кислоты. Контролируемое высвобождение лекарства предотвращает негативное воздействие препарата, например, пищеварительного фермента или ацетилсалициловой кислоты на слизистую желудка, так как при низких значениях рН, характерных для среды желудка, эти полимеры нерастворимы. При попадании в кишечник — среду с более высокими значениями рН — полимерная оболочка начинает растворяться, высвобождая активное вещество. Так, от возможной инактивации в сильнокислой среде желудка полимерной оболочкой надёжно защищено лекарство для борьбы с панкреатитом, содержащее фермент поджелудочной железы амилазу.

Термочувствительные полимеры меняют свои свойства в ответ на изменения температуры. Одно из их уникальных свойств — наличие критической температуры растворения. Выше или ниже этой температуры высокомолекулярное соединение выпадает в осадок.

Такие полимеры, как и рН-чувствительные, применяются в системах доставки биоактивных соединений, в которых при изменении температуры среды запускается высвобождение лекарственного средства. Это может происходить при повышении температуры тела пациента или внешней температуры, как, например, в случае подкожных имплантатов, активируемых нагревом. Механизм высвобождения заключается в коллапсировании (резком уменьшении размера) гидрогеля при изменении температуры внешней среды, что сопровождается выходом инкапсулированного препарата.

Термочувствительные полимеры, используемые в качестве матрицы, можно разделить на две группы: полимеры с верхней критической температурой растворения (ВКТР) и с нижней критической температурой растворения (НКТР). Полимеры с ВКТР образуют гидрогели, которые резко уменьшаются в объёме при уменьшении температуры ниже критической. Это, например, поликапролактоны, сополимеры капролактона с гликолевой кислотой, три-блок-сополимеры полиэтиленгликоль-полипропиленгликоль-полиэтиленгликоль (плюроники). Полимеры с НКТР образуют гидрогели, степень набухания которых резко возрастает при уменьшении температуры, коллапс геля в этом случае наблюдается при увеличении температуры выше критической. К таким полимерам относятся N-замещённые полиакриламиды, среди них особый интерес представляет поли-N-изопропилакриламид, имеющий критическую температуру 32°С. На основе данного полимера создана система с контролируемым высвобождением жаропонижающего препарата. При температуре ниже критической гидрогель набухает, а при повышении — сжимается, высвобождая лекарство. Подобная система доставки может работать вплоть до полного исчерпания препарата.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Виктория Романенко: «Видимо, Волчек просто в меня поверила» Виктория Романенко: «Видимо, Волчек просто в меня поверила»

Я же нежная и мягкая, так почему никогда не веду себя соответствующим образом?

Караван историй
Еда и напитки в самолете: что заказать, а от чего воздержаться Еда и напитки в самолете: что заказать, а от чего воздержаться

Стоит ли пить и есть в самолете: советы экспертов

РБК
Оттенки неба Оттенки неба

Почему небо может принимать те или иные цвета в разных местах?

Знание – сила
Чистый спорт Чистый спорт

Насколько сложно продвигать не самый популярный вид спорта и зачем это делать?

Y Magazine
Не покупай это: 11 хитрых способов, которыми рестораны и кафе заставляют нас тратить больше денег Не покупай это: 11 хитрых способов, которыми рестораны и кафе заставляют нас тратить больше денег

Бесплатная корзинка с хлебом бывает только в мышеловке

VOICE
Разговоры о всяком Разговоры о всяком

«Папуля»: одноактная пьеса в кинотеатре

Weekend
Незваные гости Незваные гости

7 способов избавиться от сорняков на даче

Лиза
9 способов использования эфирных масел на кухне 9 способов использования эфирных масел на кухне

Как поддерживать чистоту на кухне с помощью эфирных масел

VOICE
83% компаний могут пропустить кибератаку из-за недостатков мониторинга инфраструктуры 83% компаний могут пропустить кибератаку из-за недостатков мониторинга инфраструктуры

83% организаций в ходе мониторинга кибербезопасности сталкиваются с проблемами

Forbes
Россия и Африка на пути к сотрудничеству Россия и Африка на пути к сотрудничеству

Зачем нам надо изучать Африку как можно лучше и глубже?

Знание – сила
Жираф Самсон и дельфин Моби: самые известные животные-долгожители в зоопарках мира Жираф Самсон и дельфин Моби: самые известные животные-долгожители в зоопарках мира

Животные из зоопарков, которые по человеческим меркам прожили около 100 лет

Forbes
«Извините, автор умер». Как смотреть фильмы Бергмана и Антониони «Извините, автор умер». Как смотреть фильмы Бергмана и Антониони

Чем похожи Антониони и Бергман и как правильно смотреть их фильмы?

СНОБ
«Горжусь нашим кастингом» «Горжусь нашим кастингом»

Режиссер Анна Матисон об истории адвоката Плевако и историческом детективе

OK!
Через всю страну на двух колесах Через всю страну на двух колесах

Как проходила наиболее протяженная велогонка Red Bull Trans-Siberian Extreme

2Xplore
«Красная книга – это не просто книжка с картинками» «Красная книга – это не просто книжка с картинками»

Чем ценны суслики, почему важно их изучать и зачем надо их охранять

Наука
Пометки и штрафы: семь вопросов о новом законопроекте для блогеров Пометки и штрафы: семь вопросов о новом законопроекте для блогеров

Главные вопросы о новых поправках в законопроекте для блогеров

Forbes
Кама Гинкас: «Пытаться разгадать гения — все равно что пытаться разгадать жизнь» Кама Гинкас: «Пытаться разгадать гения — все равно что пытаться разгадать жизнь»

Режиссер Кама Гинкас о прозе Пушкина, языке театра и спектаклях-долгожителях

Монокль
Как остановить кровь: капиллярное, артериальное, венозное кровотечение Как остановить кровь: капиллярное, артериальное, венозное кровотечение

Как остановить кровотечение: от надавливания до наложения жгута

РБК
Фанатские теории по «Назад в будущее», которые все меняют Фанатские теории по «Назад в будущее», которые все меняют

Док хотел покончить с собой, Марти мертв и куда пропали ховерборды?

Maxim
Реальное право на искусственное сознание Реальное право на искусственное сознание

Почему цифровая среда так плохо поддается правовой регуляции

Монокль
Теневые короли и их великий «Шелковый путь 2.0» Теневые короли и их великий «Шелковый путь 2.0»

«Шелковый путь»: сетевая империя, которая изменила очень многое в XXI веке

P.I.C. Partner In Crime
Странная принцесса Странная принцесса

Жизнь принцессы Александры Ольденбургской стала основой для жития святой

Дилетант
Страшный эксперимент из СССР! Как ученый Владимир Демихов создал двухголовую собаку Страшный эксперимент из СССР! Как ученый Владимир Демихов создал двухголовую собаку

Сюрреалистичный эксперимент доктора Демихова

ТехИнсайдер
Журнал Time опубликовал рейтинг «100 величайших мест мира — 2024»: что вошло в список Журнал Time опубликовал рейтинг «100 величайших мест мира — 2024»: что вошло в список

Журнал Time составил список из 100 самых лучших мест на Земле

Maxim
Мечта сталкера Мечта сталкера

За кораблями, крабами и суровой природой Кольского

2Xplore
Что не так в системе Сатурна и что такое «Титан» Что не так в системе Сатурна и что такое «Титан»

Когда и почему система Сатурна стала неправильной?

Наука и техника
Чем черника отличается от голубики и в чем ее польза для организма Чем черника отличается от голубики и в чем ее польза для организма

Черника известна пользой для зрения, но это лишь верхушка айсберга

РБК
Без шанса на удачу: 5 фактов о дуэли Пушкина, которые вы могли не знать Без шанса на удачу: 5 фактов о дуэли Пушкина, которые вы могли не знать

Рассказываем 5 фактов о дуэли Пушкина, которые вы могли не знать

ТехИнсайдер
Фильмы, которые совершили революцию в кино и вышли уже при нашей жизни Фильмы, которые совершили революцию в кино и вышли уже при нашей жизни

Фильмы, которые перевернули киноиндустрию

Maxim
«Как жемчуг падает на нефритовую тарелку»: интересные факты о телебашне Шанхая «Как жемчуг падает на нефритовую тарелку»: интересные факты о телебашне Шанхая

Как создавалась телебашня Шанхая

ТехИнсайдер
Открыть в приложении