Измеряя круг
Преобразование круга в равновеликий ему квадрат, или квадратура круга, — самая знаменитая задача на построение из наследия древнегреческих математиков. Многих в ней привлекала простая и понятная формулировка, невольно порождавшая иллюзию элементарности решения. Но кто бы мог подумать, что его поиски продлятся без малого 2500 лет! Задача оказалась «крепким орешком» и для учёных, и для многочисленных любителей геометрии.
Непокорная задача
Непреодолимые трудности, с которыми сталкивался каждый, кто брался квадрировать круг, только добавляли популярности этой задаче. Свою роль сыграло также честолюбие квадратурщиков, их желание войти в историю или хотя бы получить заслуженную награду. Известность задачи росла вместе с увеличением числа неудачных попыток отыскать её решение.
В древности квадратура круга приобрела популярность стараниями самих греков. В конце V века до н. э. «отец комедии» Аристофан даже шутил на эту тему. В его пьесе «Птицы» землемер Метон, известный в то время в Афинах астроном, геометр и инженер, орудуя чертёжными инструментами, предлагает афинянину Писфетеру распланировать основанный им между небом и землёй птичий город:
Здесь линейку я
Изогнутую приложу и циркулем
Отмерю расстоянье...
Затем прямую, тоже по линеечке,
Я проведу,
чтоб круг квадратом сделался.
Здесь, в центре, будет рынок.
К рынку улицы
Пойдут прямые...
«Ты Фалес поистине! — восклицает иронично Писфетер и гонит прочь Метона: — Ступай-ка ты отсюда по-хорошему... Здесь принято решение — бить мошенников».
Сдаётся мне, проницательный герой Аристофана выражает мнение тех математиков своего времени, которые усомнились в разрешимости квадратуры круга с помощью циркуля и линейки, как того требовало условие задачи. А предложение Метона изогнуть линейку — намёк на попытки некоторых геометров отыскать окольный путь.
Архимед с помощью метода вписанных и описанных многоугольников показал, что в любой окружности её длина L превышает утроенный диаметр D менее чем на 1/7 его часть, но более чем на 10/71. Для отношения L к D он выбрал приближение 22/7, названное позже архимедовым числом. Или в современных обозначениях: 3,14084... < π < 3,14285... и π ≈ 3,14. Буквой π эту константу первым обозначил в 1706 году английский математик Уильям Джонс. Сумей геометры получить отрезок длиной π, они легко построили бы треугольник с катетами R и 2πR, а затем и квадрат площадью πR2
Обманчивая простота
История квадратуры круга полна заблуждений и ошибок. Много веков эта обманчиво простая задача будоражила умы европейских учёных и не давала покоя малосведущим любителям. Всякая вспышка интереса к ней порождала «эпидемию квадратуры круга», как метко окрестил это явление один историк математики. Первой жертвой задачи в V веке до н. э. стал ионийский философ и математик Анаксагор, который, по словам античного писателя Плутарха, томясь в темнице, занимался геометрией и «начертал квадратуру круга». Если некое построение и было найдено, то всего лишь приближённое.
А вот как рассуждал философ-софист Антифон, современник Анаксагора. Впишем квадрат в круг и станем последовательно удваивать число его сторон. Когда оно будет достаточно велико, а сами стороны ничтожно малы, многоугольник совпадёт с кругом. Тем самым площади фигур уравняются. Для всякого правильного многоугольника можно построить равновеликий ему квадрат, значит, такое же построение возможно для круга.
Решение Антифона, конечно, не выдержало критики. А вот сама идея неограниченно приблизиться к кругу с помощью последовательности вписанных многоугольников оказалась небесполезной. Она легла в основу метода исчерпывания (применялся при вычислении площадей и объёмов), который разработал в IV веке до н. э. древнегреческий учёный Евдокс Книдский. Кстати, именно его ученик Динострат сумел точно квадрировать круг; правда, дело не обошлось без механической, то есть определённой не геометрически, а с помощью движения, кривой. Но подобные ухищрения геометров не устраивали, поскольку нарушали главное требование: чертить можно только прямые и окружности!
Древние греки рассмотрели также задачу о спрямлении окружности, идентичную квадратуре круга. В ней нужно построить отрезок, длина которого равна длине данной окружности. Впрочем, близкое родство двух этих задач математики выявили не сразу. Интересно, что ни та ни другая задача не упоминаются в «Началах» Евклида, где впервые была изложена общая теория геометрических построений и много внимания уделено свойствам окружности и круга.
В III веке до н. э. гениальный учёный и инженер Архимед Сиракузский строго доказал, что круг равновелик прямоугольному тре-угольнику, один катет которого равен радиусу, а другой — спрямлённой окружности, границе круга. Тем самым квадратура круга радиуса R свелась к построению отрезка длиной 2πR. Сам Архимед, кстати, мог проделать его с помощью исследованной им спирали. Если удастся построить с помощью циркуля и линейки отрезок длиной π ≈ 22/7, задача будет решена. Прошло более 2000 лет, прежде чем выяснилось, что это невозможно.