Адаптивная оптика: как рассмотреть звёзды на небе?
Россыпь звезд, будто подмигивающих наблюдателю, выглядит очень романтично. Но у астрономов это красивое мерцание вызывает вовсе не восхищение, а совершенно противоположные чувства. К счастью, есть способ исправить ситуацию.

Эксперимент, вдохнувший новую жизнь в науку о космосе, был выполнен не в знаменитой обсерватории и не на гигантском телескопе. Специалисты узнали о нем из статьи Successful Tests of Adaptive Optics, опубликованной в астрономическом журнале The Messenger в 1989 году. Там были представлены результаты испытаний электрооптической системы Come-On, предназначенной для корректировки атмосферных искажений света космических источников. Их провели с 12 по 23 октября на 152-см рефлекторе французской обсерватории OHP (Observatoire de Haute-Province). Система сработала настолько хорошо, что авторы начали статью утверждением, что «давняя мечта астрономов, работающих на наземных телескопах, наконец-то исполнилась благодаря созданию новой техники оптических наблюдений — адаптивной оптики».

А через несколько лет системы адаптивной оптики (АО) начали ставить на большие инструменты. В 1993 году ими оснастили 360-см телескоп Европейской южной обсерватории (ESO) в Чили, чуть позже — такой же инструмент на Гавайях, а затем и 8−10-метровые телескопы. Благодаря АО в наземные инструменты можно наблюдать светила в видимом свете с разрешающей способностью, которая была уделом лишь космического телескопа Hubble, а в инфракрасных лучах — даже с более высокой. Например, в очень полезном для астрономии участке ближней инфракрасной зоны с длиной волны 1 мкм Hubble обеспечивает разрешение в 110 угловых мс, а 8-метровые телескопы ESO — до 30 мс.
На самом деле, когда французские астрономы испытывали свою систему АО, в США уже существовали аналогичные устройства. Но создали их вовсе не для нужд астрономии. Заказчиком этих разработок был Пентагон.

Когда воздух помеха
Если наблюдать в телескоп две звезды, расположенные на небосводе очень близко друг к другу, их изображения сольются в одну светящуюся точку. Минимальное угловое расстояние между такими звездами, обусловленное волновой природой света (дифракционный предел), — это и есть разрешающая способность прибора, и она прямо пропорциональна длине волны света и обратно пропорциональна диаметру (апертуре) телескопа. Так, для трехметрового рефлектора при наблюдениях в зеленом свете этот предел составляет около 40 угловых мс, а для 10-метрового — чуть больше 10 мс (под таким углом мелкая монета видна с расстояния 2000 км).
Однако эти оценки справедливы только для наблюдений в вакууме. В земной атмосфере постоянно возникают участки локальной турбулентности, которая несколько сотен раз в секунду изменяет плотность и температуру воздуха и, следовательно, его показатель преломления. Поэтому в атмосфере фронт световой волны от космического источника неминуемо расплывается. В результате реальная разрешающая способность обычных телескопов в лучшем случае составляет 0,5−1 угловую секунду и сильно не дотягивает до дифракционного предела.
