Стержни, спринклер, контейнмент: как устроена система безопасности АЭС
Прошло меньше 80 лет с момента запуска первого экспериментального ядерного реактора. Однако за это время технологии сильно изменились, и мало кто знает, как на самом деле обеспечивается безопасность современных атомных станций. Чтобы развеять мифы о вреде атомной энергетики, подробно разберем все элементы системы безопасности АЭС на примере станции с водо-водяным энергетическим реактором (ВВЭР).
Контролируемая ядерная реакция: как регулируется мощность реактора
Физика реактора начинается с цепной реакции деления ядер урана. Деление происходит, когда в тяжелое ядро урана-235, содержащее 92 протона и 143 нейтрона, проникает свободный нейтрон. Он вносит избыток энергии в ранее покоящееся ядро, переводя его в возбужденное энергетическое состояние. Из подобного состояния любая материя стремится как можно скорее выйти. Раскол ядра на части – один из путей возвращения к минимуму энергии. Избыток энергии сбрасывается по нескольким каналам. 80% – это кинетическая энергия осколков, на которые разбилось ядро. Именно эта часть разогревает активную зону ядерного реактора и преобразуется затем в драгоценное электричество.
Оставшаяся часть – это энергия, которую уносит из ядра ионизирующее излучение: гамма-излучение и свободные элементарные частицы. Среди этих частиц присутствуют 2–3 свободных нейтрона, которые инициируют следующие реакции деления. Чтобы цепная реакция не приобрела лавинообразный неуправляемый характер, достаточно лишь регулировать число свободных нейтронов в активной зоне.
Это делается с помощью специальных поглощающих стержней, как правило, заполненных карбидом бора, и борной кислоты, которая присутствует в контуре охлаждения реактора. Попадая в ядро атома бора, нейтрон «застревает» в нем и больше не участвует в ядерных реакциях. Уровень погружения поглощающих стержней в активную зону, а также концентрации борной кислоты в охлаждающем контуре автоматически регулируются системой управления и защиты (СУЗ) под пристальным контролем команды операторов, которые в зависимости от требуемой мощности реактора могут регулировать цепную реакцию с помощью электрического сигнала с пульта.
Если при чрезвычайной ситуации на станции пропадет электричество, то поглощающие стержни автоматически погрузятся в активную зону. Для этого их подвешивают над реактором и фиксируют электромагнитами. При обесточивании стержни под действием силы тяжести неизменно опустятся в зону, где делится урановое топливо. Воспроизводство нейтронов прекратится, цепная реакция замедлится и остановится.
Кроме внешнего контроля над числом нейтронов конструкция активной зоны ВВЭР – наиболее распространенного типа энергетических реакторов – предусматривает так называемое саморегулирование. Если количество нейтронов возрастает, число реакций деления увеличивается. Закономерно растет общая температура топлива и конструкционных материалов активной зоны. Вслед за ней увеличивается температура теплоносителя – воды, что ведет к изменению ее плотности. Вода с пониженной плотностью лучше поглощает нейтроны, и количество реакций деления уменьшается. Данный эффект, который называется отрицательной обратной связью, возникает благодаря комплексным изменениям нейтронно-физических характеристик активной зоны, просчитанных и подобранных на этапе разработки реактора.
Естественный фон: как защитить персонал станции и окружающую среду
Радиоактивные продукты деления и образующееся в его ходе ионизирующее излучение не покидают корпус реактора благодаря четырем барьерам безопасности. Барьеры напоминают фильтры на водоочистительной станции, которые поэтапно задерживают крупные, средние, а затем и вовсе неразличимые глазом примеси. «Фильтры» в реакторе по очереди останавливают продукты радиораспада – от самых медленных и тяжелых осколков деления до самых легких и быстрых частиц.
Первым барьером служит сама топливная таблетка – спрессованный в характерную форму твердый диоксид урана. Таблетки перед сборкой в тепловыделяющий элемент (ТВЭЛ) спекаются при температуре 1650 °С, после чего они приобретают керамические свойства и задерживают некоторые нуклиды. Радионуклиды и частицы распада, которые проходят первый барьер, сталкиваются со вторым – оболочкой ТВЭЛ. Оболочку изготавливают из сплавов циркония ядерной чистоты, практически лишенного примесей, как правило, с небольшой добавкой ниобия. Чистота сплава обеспечивает повышенную коррозионную стойкость циркония. В нормальных режимах эксплуатации (без разгерметизации ТВЭЛ) все продукты деления остаются внутри ТВЭЛ.