Расчеты на будущее
Какие новые технологии вычислений придут на смену классическим компьютерам

Компьютерам все чаще поручают новые сложные задачи — от обучения нейросетей до симуляции биологических процессов. Рассказываем, почему старые архитектуры вычислительных машин уже не справляются с этой работой и какие технологии придут им на смену.
Память из прошлого: где потолок для традиционного «железа»
Долгое время развитие компьютеров следовало правилу, которое вошло в историю как закон Мура. В 1965 году Гордон Мур, один из основателей компании Intel, заметил: каждые два года количество транзисторов на микросхеме примерно удваивается. А значит, чипы становятся быстрее, мощнее и дешевле.
Транзистор — это крошечный электронный переключатель, управляющий током. Чем больше таких переключателей на чипе, тем выше его вычислительная мощность.
Это простое наблюдение стало двигателем всей индустрии: с 1971 года, когда появился процессор Intel 4004 (2300 транзисторов, размер — 10 микрометров), и до наших дней количество транзисторов в микросхемах росло в геометрической прогрессии. Но важно понимать: закон Мура — это не физический закон, а скорее инженерная цель, которую индустрия долгое время успешно достигала.
Сегодня эта гонка начинает замедляться. Транзисторы уже настолько малы, что их сложно производить: электроны начинают «просачиваться» сквозь границы, чипы перегреваются, а энергозатраты растут. Производство становится все более дорогим и сложным. Скорость и эффективность растут все медленнее — эпоха бесконечного масштабирования подходит к концу.
И дело не только в «железе». Современные задачи — от обучения нейросетей и обработки больших данных до симуляций климата или биологических процессов — требуют не только скорости, но и иного подхода к вычислениям. Большинство компьютеров до сих пор устроены по модели фон Неймана, предложенной еще в середине XX века. Она основана на разделении памяти и процессора: данные хранятся в одном месте, обрабатываются в другом и постоянно перемещаются между ними.
Этот принцип хорошо работал десятилетиями, но при оперировании огромными объемами информации он превращается в узкое горлышко. Даже самый быстрый процессор не сможет эффективно работать, если все время простаивает, ожидая данные из памяти.
Поэтому сегодня речь идет не только о том, чтобы делать чипы еще быстрее. Ученые все чаще задумываются о другом: как изменить саму архитектуру вычислений под задачи XXI века. И здесь на сцену выходят новые, неклассические подходы.
Нейроморфные вычисления: думать, как мозг
Сегодня, когда классические компьютеры начинают буксовать, исследователи все чаще обращаются к природе, а точнее — к самому совершенному вычислительному устройству, которое мы знаем, — человеческому мозгу. Так появился подход под названием нейроморфные вычисления.
Нейроморфные вычисления не просто запускают нейросети на обычных чипах, а создают «железо», которое само работает по принципам мозга.
В отличие от привычных процессоров (CPU) и видеокарт (GPU), где данные обрабатываются поочередно и строго по инструкции, нейроморфные чипы работают параллельно и асинхронно, как нейроны в мозге. Вместо непрерывного сигнала — короткие импульсы, которые напоминают всплески активности между нейронами. Это делает такие системы не только более естественными для работы с искусственным интеллектом, но и гораздо более энергоэффективными.
Это может пригодиться прежде всего там, где нужно обрабатывать данные быстро и с минимальными затратами, — например, в «умных» камерах, сенсорных системах, роботах, мобильных устройствах, в которых важно экономить заряд. Нейроморфные чипы могут распознавать образы или речь почти мгновенно и без облака — прямо «на месте».