«Небесные магниты. Природа и принципы космического магнетизма»
Книга доктора физико-математических наук и профессора МГУ Дмитрия Соколова «Небесные магниты. Природа и принципы космического магнетизма» (издательство «Альпина нон-фикшн») посвящена специфической области физики — исследованию магнетизма небесных тел. Отвечая на вопросы о причинах появления, устройстве и наблюдении за магнитными полями, Соколов рассказывает, как и для чего работают ученые, принадлежащие к той — большей — части современной физики, где никак нельзя обойтись без математики. N + 1 предлагает своим читателям ознакомиться с отрывком, в котором рассказывается о построении моделей генерации магнитного поля, определении направления распространения динамо-волн и объяснению длины солнечного цикла.
Как строятся модели генерации магнитного поля
Нам пора перейти к рассказу о том, как специалисты пытаются строить теоретические модели генерации магнитных полей в конкретных небесных телах. Примерно полвека назад для этого имелся только один способ. Следовало выделить какие-то фрагменты задачи, которые можно было описать так, чтобы получающиеся уравнения были решены точно. Ну в крайнем случае приближенно — с помощью асимптотических разложений.
Конечно, для этого приходится сильно упрощать задачи, а затем перекидывать шаткие мостики от одного фрагмента, допускающего такое аналитическое описание, к другому. Это традиционный метод теоретической физики. Он требует действительно виртуозного владения математикой. Приходится только удивляться, как в начале XIX в. Френелю удалось вычислить совершенно сумасшедшие интегралы, на которых основана волновая оптика. Все идеи, лежащие в основе авиации, были выработаны подобным методом.
Новая возможность появилась в годы Второй мировой войны. Людям, раскрывавшим шифры «Энигмы» и создававшим атомные и водородные бомбы, пришлось разрабатывать первые компьютеры. Еще примерно 40 лет ушло на то, чтобы использование компьютеров перешло из области рекордных проектов в арсенал повседневной работы исследователей. Этот процесс был очень непростым и часто болезненным. Наверное, он мог бы быть не таким жестким и порой жестоким. До сих пор памятен рубеж, когда пришлось разобрать новые и интересные «Эльбрусы» и перейти на зарубежные персональные компьютеры, каждый из которых в тот момент стоил целое состояние. Потребовались десятилетия, чтобы в полной мере осознать идейное наследие, которое оставил нам Алан Тьюринг и ученые его времени.
Наконец, в середине 1990-х специалисты по вычислительной физике научились решать задачи по магнитной гидродинамике такой сложности, что стало возможным говорить о детальном воспроизведении генерации магнитных полей в небесных телах. Жизнь сложилась так, что впервые это произошло при изучении геомагнитного поля в работах Поля Робертса и Гарри Глацмайера. Наверное, их стоит считать американскими учеными, хотя Робертс как минимум половину своей жизни работал в Англии. Достижение было таким значительным, что о нем охотно писала газета The New York Times.
На какое-то время показалось, что классические методы теоретической физики безвозвратно ушли в прошлое. В самом деле, для чего изобретать изощренные постановки точно решаемых задач, если вопрос можно исследовать численно? Можно сказать и так: зачем придумывать непростую электродинамику средних полей, вводить альфа-эффект, разрабатывать методы его измерения, если можно без всего этого обойтись и непосредственно строить полные модели генерации магнитного поля, в которых не пренебрегают ничем?
Еще через лет двадцать люди осознали, что прямыми численными методами часто можно получить решение, которое никому совершенно не понятно. Оказалось, что понимание и вычисление — две дополняющие друг друга стороны изучения проблемы. Приходится заниматься обоими аспектами.
Естественно, в нашей научно-популярной книге мы будем говорить именно о понимании, а про терабайты и терафлопы лучше почитать в других источниках. Однако действительно важно исследовать обе стороны проблемы.