Производство вычислений во всяком деле имеет важное значение

Наука и жизньНаука

Рождение легенды

— Нет, Холмс, вы не человек, вы арифмометр! — воскликнул я. Артур Конан Дойл. Знак четырёх (1890)

Вильгодт Однер.
Фото: www.tekniskamuseet.se

Написав статью об арифмометре Однера в 45-м номере «Науки и жизни» за 1890 год, автор (возможно, это был сам главный редактор и по совместительству изобретатель Матвей Никанорович Глубоковский) даже и не подозревал, что отметил рождение модели арифмометра, которой затем суждено было три четверти века доминировать в мире. Именно в 1890 году российский инженер шведского происхождения Вильгодт Теофилович Однер начал выпуск на своей небольшой фабрике новой модели счётной машины, которую он разрабатывал 15 лет. Что же нового внёс Однер в конструкцию арифмометра и как он к ней пришёл?

За двадцать лет до этого, в 1868 году, двадцатитрёхлетний студент Королевского технологического института в Стокгольме оправился покорять Санкт-Петербург с 8 рублями в кармане, подобно одному молодому гасконцу, который когда-то поехал покорять Париж с 8 экю. Его вдохновлял успех в России семьи шведов Нобелей. И так уж случилось, что в российской столице он стал работать на машиностроительном заводе Людвига Эммануиловича Нобеля, старшего брата знаменитого основателя Нобелевской премии. Молодой инженер, активно занимающийся самообразованием, пришёлся по душе Нобелю и, наверное, сделал бы на его заводе большую карьеру, если бы в дело не вмешался случай: в 1871 году его попросили отремонтировать арифмометр.

Счётные машины французского изобретателя Шарля Томаса (1785—1870) (сейчас принято писать Тома, но я буду использовать старое написание) в то время и до 1890 года были единственным массово выпускаемым механическим вычислительным устройством в мире. К 1870 году их было произведено около 1000 штук, и впоследствии они завоевали репутацию эталона этого вида техники. Их часто называли томас-машинами, хотя сам автор придумал для них название «Арифмометр», ставшее со временем названием всего рода вычислительных механических машин, способных выполнять все четыре арифметических действия. Отметим, что за создание арифмометра Томас получил степень офицера ордена Почётного легиона и стал именовать себя Томас де Кольмар.

Конструкция томас-машин была достаточно сложна, а изготовление деталей требовало высокой точности, так что ремонтировали их тогда только в одном месте — в Париже. История не сохранила нам имени человека, доверившего, возможно, по рекомендации Нобеля, ремонт столь дорогой машинки молодому инженеру, но он не прогадал. Однер не только сумел разобраться в устройстве, но и исправил его. Более того, как позднее написал сам Однер, он при этом пришёл к убеждению, что есть возможность более простым и целесообразным способом решить задачу механического исчисления.

Механизм арифмометра Томаса для одного разряда. Иллюстрация из книги: И. А. Апокин, Л. Е. Майстров. История вычислительной техники: От простейших счётных приспособлений до сложных релейных систем. — М.: Наука, 1990.

Прежде, чем мы продолжим разговор о молодом изобретателе и его идее, попробуем понять, в чём заключается сам принцип механических вычислений, использованный Томасом, а затем и Однером. Тем, кого интересуют все существовавшие конструкции счётных машин, рекомендую замечательную монографию: И. А. Апокин, Л. Е. Майстров «История вычислительной техники: От простейших счётных приспособлений до сложных релейных систем» (М.: Наука, 1990), материалы из которой использованы в этой статье.

Итак, представим себе зубчатое колесосчётчик с десятью зубьями, с каждым из которых связана цифра, показываемая в окошке. Если изначально в окошке видна цифра 0, то, повернув колесо на три зуба, мы увидим в окошке уже цифру 3. А теперь, повернув колесо счётчика ещё на 4 зуба, мы увидим в окошке 3 + 4 = 7. Таким образом, реализуется сложение с помощью зубчатого колеса. Легко догадаться, что вычитание производится поворотом колеса в другую сторону. Например, 7 зубьев вперёд, а затем 5 назад, и в окошке появится 7 – 5 = 2. Умножение на целое число сводится к повтору поворотов: четыре раза по два зуба — и в окошке появится 2 х 4 = 8.

Для работы с многозначными числами надо собрать конструкцию из нескольких зубчатых колёс, каждое из которых соответствует своему разряду (единицы, десятки, сотни и т. д.). Надо только придумать механизм переноса десятков. То есть, когда первое колесо повернётся более, чем на 9 зубцов, второе должно повернуться на один. Вот здесь и возникают ещё две главные проблемы, помимо механизма передачи десятков, которые надо было решить конструкторам вычислительных машин.

Двадцатиразрядный арифмометр Томаса, произведённый около 1875 года. Возможно, именно такой ремонтировал В. Однер. Фото: Ezrdr/Wikimedia Commons/PD

Первая, как заставить каждое зубчатое колесо поворачиваться на своё количество зубьев, вращая их все вместе одной рукояткой. Совершенно очевидно, что вращать каждое колесо по отдельности нельзя, поскольку не будет выигрыша во времени счёта, точнее, наоборот, будет проигрыш, — проще считать на бумаге. Поэтому, например, умножить 357 на 8 надо всего за восемь поворотов рукоятки. При этом первое колесо каждый раз должно поворачиваться на 7 зубьев, второе — на 5, а третье — на 3. Вторая, как уменьшить число поворотов ручки при умножении. Понятно, что для умножения на 748 не хотелось бы делать 748 поворотов.

Хорошо работающее решение всех этих задач первым нашёл великий немецкий учёный-энциклопедист Готфрид Вильгельм Лейбниц (1646—1716). Для передачи чисел на колёса-счётчики Лейбниц придумал ступенчатый валик (см. рисунок). Ступеньки на валике, играющие роль зубьев, имели разную длину, поэтому, перемещая пере-дающую шестерню вдоль валика, можно было размещать её в зоне с разным числом ступенек. В начале валика под ней оказывались все 9 ступеней, и один оборот валика заставлял счётчик поворачиваться на 9 зубьев. Где-то в середине валика было, скажем, 5 ступеней, и один его оборот смещал счётчик уже на 5 зубьев. Таким образом, на каждом валике устанавливалась своя цифра числа, например, для числа 863 на первом валике передающая шестерня смещалась в область с 3 ступеньками, на втором — на 6, а на третьем — на 8. Теперь все валики одновременно поворачивались рукоятью и передавали на счётчик число 863.

Принцип работы «колеса Однера». В основном диске, насаженном на вал арифмометра, сделаны девять пазов, в которых находятся выдвижные зубья. Они имеют боковые выступы, входящие в прорезь в подвижном установочном диске, который можно поворачивать с помощью рычажка, выведенного на переднюю панель арифмометра. Прорезь имеет «ступеньку», благодаря которой происходит выдвижение зубьев при повороте установочного диска. Количество выдвинутых зубьев, то есть установленная цифра, зависит от угла его поворота. Зубчатые вырезы на установочном диске служат для вхождения подпружиненного фиксатора, не позволяющего диску самопроизвольно смещаться. Передачу десятков осуществляют отклоняющиеся в сторону зубья. Рисунок на основе рисунка из книги: Хренов Л. С. Малые вычислительные машины. М.: ГИФМЛ, 1963. 

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Двухсотлетний Тарас Двухсотлетний Тарас

Что не так в гоголевской хронологии истории Тараса Бульбы

Дилетант
1948: за советский спорт 1948: за советский спорт

Как начиналось серийное производство спортивных мотоциклов в СССР

Мото
Почему комары кусают не всех Почему комары кусают не всех

Комары кусают не всех — это факт

Наука и жизнь
Джеймс Роллинс: Последняя одиссея Джеймс Роллинс: Последняя одиссея

Герои книги Джеймса Роллинса «Последняя одиссея» исследуют ледники Гренландии

СНОБ
Скульптор Антон Иванов Скульптор Антон Иванов

Созданные Антоном Ивановым произведения стали достоянием отечественной культуры

Наука и жизнь
Недолго и несчастливо: почему женатые люди получают не больше удовольствия от жизни, чем одинокие и свободные Недолго и несчастливо: почему женатые люди получают не больше удовольствия от жизни, чем одинокие и свободные

Отрывок из книги «Год без мужчин. Чему я научилась без свиданий и отношений»

Forbes
Спорная экспертиза Спорная экспертиза

Самоубийство Елизаветы Черемновой, потрясшее всю Российскую империю

Дилетант
По местам По местам

Дома должно быть легко и спокойно

Добрые советы
После выборов После выборов

Южная Корея, Сеул, район Куро, 18 декабря 1987 года

Дилетант
Что такое энзимная косметика и кому она подойдет Что такое энзимная косметика и кому она подойдет

Почему энзимная косметика так быстро набирает популярность?

Psychologies
Как половчанки породнили Русь и степь Как половчанки породнили Русь и степь

Рассказы о непримиримой вражде русских князей и кочевников сильно преувеличены

Дилетант
«Это нужно отметить»: как распознать первые признаки алкогольной зависимости «Это нужно отметить»: как распознать первые признаки алкогольной зависимости

Алкоголизм и его последствия ежегодно уносят жизни огромного количества людей

Psychologies
Мы разобрались, как работает тикток Мы разобрались, как работает тикток

Как угодить алгоритмам и попасть в «Рекомендованное» в TikTok?

GQ
«Да, шеф!» Как проходят стажировки на ресторанных кухнях «Да, шеф!» Как проходят стажировки на ресторанных кухнях

Как пережить бесконечные смены и получить максимум от каждого дня на чужой кухне

Bones
Уперся рогом! Уперся рогом!

Как ужиться с упрямцем? Подскажет психолог

Лиза
Почему предпринимателям нужно брать пример с тоддлеров Почему предпринимателям нужно брать пример с тоддлеров

Научиться ходить гораздо сложнее, чем кажется

Inc.
Кино шума и времени Кино шума и времени

Ксения Рождественская о Шанталь Акерман

Weekend
Откуда произошло слово «частушка»? Откуда произошло слово «частушка»?

Частушка — поздний жанр русского музыкального фольклора

Культура.РФ
Автомобилиста лишили прав за чужое нарушение. Так вообще бывает? Автомобилиста лишили прав за чужое нарушение. Так вообще бывает?

Водителя лишили прав за пьяное вождение, хотя он весь день сидел дома

РБК
Со дна за одной Со дна за одной

«Чики» — восемь серий нестоличного взгляда на жизнь

Огонёк
Мясник или гений: эксперименты «отца современной гинекологии» Мясник или гений: эксперименты «отца современной гинекологии»

Джеймс Марион Симс считается одной из самых противоречивых фигур в медицине

Популярная механика
«Древо жизни»: почему нам важно знать историю своего рода «Древо жизни»: почему нам важно знать историю своего рода

О том, почему нам нужно знать о собственных корнях

Psychologies
Пчеловечество в опасности Пчеловечество в опасности

Удастся ли остановить вымирание пчел и как обстоят дела с производством меда

Огонёк
Манграм предрекли вымирание из-за антропогенного повышения уровня моря Манграм предрекли вымирание из-за антропогенного повышения уровня моря

Повышение уровня моря станет угрозой мангровым лесам к 2050 году

N+1
Лима, Перу Лима, Перу

Перу заслуженно сравнивают с Крымом

Maxim
Затаил обиду? 4 техники, помогающие научиться прощать Затаил обиду? 4 техники, помогающие научиться прощать

Не держи чувство обиды в себе

Playboy
7 привычек, из-за которых ты рискуешь остаться один (от них нужно избавиться) 7 привычек, из-за которых ты рискуешь остаться один (от них нужно избавиться)

Такое поведение ставит под угрозу твои отношения

Playboy
Фотоиндукция увеличила скорость CRISPR в 100 раз Фотоиндукция увеличила скорость CRISPR в 100 раз

Химическая модификация РНК позволила синхронизировать и ускорить работу CRISPR

N+1
«Сегодня я не стану кричать на ребенка». Нужно ли исправлять свои родительские ошибки «Сегодня я не стану кричать на ребенка». Нужно ли исправлять свои родительские ошибки

Отрывок из книги детского психолога Екатерины Кес о трудностях воспитания

Forbes
Олимпийский автопарк. На чем ездили по Москве летом 1980-го Олимпийский автопарк. На чем ездили по Москве летом 1980-го

Яркие автомобили Олимпиады-80

РБК
Открыть в приложении