В космосе обнаружена очередная сложная органическая молекула

Знание – силаНаука

Органический синтез в молекулярных облаках

Дмитрий Вибе

Понятие органической химии и органических соединений возникло в начале XIX века и было призвано выделить химические процессы и вещества, задействованные в функционировании живых организмов. Уже в 1820‑е годы стало ясно, что никакой принципиальной разницы между органической и неорганической химией нет и органические соединения вовсе не обязательно имеют биологическое происхождение. Однако понятие органики и по сей день наделено неким смутным обещанием жизни и привлекает к себе связанное с этим особое внимание.

Новости о том, что в космосе обнаружена очередная сложная органическая молекула, кажутся следующим шагом на пути к обнаружению внеземной жизни, однако нужно понимать, что сложность здесь далеко не та, что встречается в биологии. В астрохимии сложными называют органические молекулы, содержащие шесть или более атомов.

Первой космической органической молекулой стал формальдегид (H2CO), обнаруженный в 1969 году. Буквально на следующий год была обнаружена первая сложная органическая молекула – метанол (CH3OH). Сейчас количество известных межзвездных и околозвездных молекул стремительно близится к трем сотням, и значительная их часть относится к органическим и сложным органическим соединениям. Среди известных межзвездных органических молекул самыми большими являются молекулы цианонафталина (C10H7CN), состоящие из 19 атомов – два бензольных кольца, у которых один атом водорода замещен группой CN.

Понятно, что расширение списка за счет еще более крупных молекул будет более медленным, чем раньше. Это связано с проблемами их детектирования. Молекулы, как и атомы, обнаруживаются по наблюдениям соответствующих спектральных линий (как в излучении, так и в поглощении). Молекулярные линии наблюдаются в широчайшем спектральном диапазоне, начиная от ультрафиолета и заканчивая сантиметровыми волнами. Однако массивные, то есть многоатомные молекулы, детектируются практически исключительно в сантиметровом и миллиметровом диапазонах. В качестве инструмента для поиска новых молекул убедительно лидирует 30‑метровый телескоп миллиметрового диапазона IRAM, установленный в Испании. В последнее время с ним начинает конкурировать недавно обновленный 40‑метровый телескоп Yebes, также расположенный в Испании. Важный вклад вносит 100‑метровый телескоп обсерватории Грин-Бэнк в США.

Телескоп IRAM
Телескоп обсерватории Грин-Бэнк

Несмотря на совершенствование наблюдательной техники, мы по-прежнему открываем в основном простые двух-трехатомные соединения. Темп открытия более крупных молекул существенно ниже. Наряду с цианонафталином обнаруживаются и другие циклические и ветвящиеся молекулы. Неоднократно сообщалось об открытии в молекулярных облаках простейшей аминокислоты – глицина, однако всякий раз за этими сообщениями следовали опровержения. В 2023 году появилась публикация об обнаружении спектральных признаков существенно более сложной аминокислоты – триптофана, но и она затем была оспорена.

Проблема в том, что чем сложнее молекула, тем сложнее ее идентифицировать. Вообще для выявления молекул в межзвездной среде используется тот же метод спектрального анализа, что и для звезд. Но в звездах главным образом наблюдаются линии, связанные с электронными переходами, то есть с изменением энергии движения электронов вокруг атомных ядер. Они попадают в основном в ультрафиолетовый и видимый диапазоны. А в молекулах возможны не только движения электронов, но и движения атомов друг относительно друга. Молекулы могут, например, колебаться и вращаться. Каждое из этих движений тоже квантовано: энергии, связанные с колебаниями и вращениями (или с более сложными движениями), могут принимать строго определенный набор значений, индивидуальный для каждой молекулы. Переходя из одного энергетического состояния в другое, молекула поглощает или излучает фотон с определенной энергией, порождая спектральную линию. Энергетика этих переходов не так значительна, как в случае электронных переходов, поэтому линии, связанные с колебательными переходами, попадают, как правило, в ближний инфракрасный диапазон, а линии, связанные с вращательными переходами, в субмиллиметровый и радиодиапазон.

Чем сложнее молекула, тем более многочисленные движения в ней могут происходить и, соответственно, тем больше она порождает линий. Но, поскольку общая энергия, доступная для «раскачки» структуры, одна и та же и для маленьких, и для больших молекул, у последних линии оказываются гораздо более слабыми, что затрудняет их детектирование. Чтобы увидеть эти линии, нужно накопить больше фотонов – задача, требующая большого телескопа и (или) длительных наблюдений. Есть и другие проблемы. Спектр одной сложной молекулы похож на расческу с тесно посаженными зубьями разной длины. Но в молекулярном облаке помимо этой молекулы есть и другие, поэтому в реальном спектре мы наблюдаем наложение друг на друга разных «расчесок», и нам нужно не только зафиксировать линии одной молекулы, но и отделить их от таких же многочисленных и слабых линий других молекул. Добавим в эту картину еще и изотопологи, то есть молекулы, в которых один или несколько атомов основного изотопа химического элемента замещены атомами его неосновного изотопа. Например, обычный водород (протий) может быть замещен дейтерием, углерод‑12 – углеродом‑13 и т. п. Спектры изотопологов несколько отличаются от спектров «основных» молекул и вносят в наблюдаемую картину свою долю путаницы.

Списки линий известны для ограниченного количества молекул. Определение длин волн и интенсивностей возможных переходов в молекуле требует сложных вычислений или экспериментов, при этом нужно заранее предугадать, какая конструкция из атомов окажется интересной с астрохимической точки зрения! Повышение спектрального разрешения и чувствительности телескопов только усугубляет эту проблему. Например, в спектре туманности NGC 6334 (Скорпион), полученном на космическом телескопе Гершель1, доля неидентифицированных линий составляла всего 10%. На том же участке спектра, измеренном с более высокой чувствительностью на телескопе ALMA2, неизвестными оказались уже 70% линий.

1Телескоп «Гершель» – первая космическая обсерватория для полномасштабного изучения субмиллиметрового излучения в космосе. Работал с 2009 по 2013 год.

2Atacama Large Millimeter Array – комплекс радиотелескопов, расположенный в чилийской пустыне Атакама, который наблюдает электромагнитное излучение с миллиметровой и субмиллиметровой длиной волны.

Теперь о том, как рождается наблюдаемое разнообразие. Если мы просто возьмем атом водорода и атом углерода, они не начнут сами собой объединяться в более сложные молекулы. Сейчас лидирующее объяснение состоит в том, что для инициирования химических процессов в молекулярных облаках их вещество нужно немного ионизовать, потому что реакции между ионизованным и нейтральным реагентом идут гораздо быстрее, чем реакции между двумя нейтральными реагентами.

В 1973 году была предложена следующая картина: допустим, на какойто ранней фазе эволюции молекулярного облака в нем присутствуют нейтральные атомы и молекула H2. Космические лучи начинают ионизовать примесные атомы и молекулу водорода. Ион H2+ быстро реагирует еще с одной молекулой H2 и превращается в ион H3+. Дальше реализуется общая схема, которую лучше показать на примере кислорода. Либо в результате реакции между ионом О+ и молекулой H2, либо в результате реакции нейтрального атома О с ионом H3+ образуется ион OH+. Последовательные реакции с молекулой H2 приводят к формированию ионов H2O+ и H3O+. Ион H3O+ рекомбинирует с электроном, разваливаясь на молекулу воды и атом водорода или на радикал OH (гидроксил) и молекулу H2. Поскольку рекомбинация молекулярного иона, как правило, приводит не только к его нейтрализации, но и к развалу, она называется диссоциативной рекомбинацией.

Изначально предполагалось, что что-то похожее происходит и с углеродом, постепенно превращая его в метан, но все оказалось сложнее. Реакция иона углерода с молекулой H

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Видкун Квислинг, символ предательства Видкун Квислинг, символ предательства

Никто не получил такую порцию презрения при жизни и после, как Видкун Квислинг

Дилетант
Саранча толпится на улицах Саранча толпится на улицах

Для моделирования городских потоков можно использовать саранчу

Знание – сила
Обжигаемый Солнцем: экскурсия на Меркурий Обжигаемый Солнцем: экскурсия на Меркурий

Какие же тайны и интересные особенности скрывает Меркурий?

Наука и жизнь
Связь одиночества с риском заболеваний назвали не причинной для большинства из них Связь одиночества с риском заболеваний назвали не причинной для большинства из них

Действительно ли одиночество и различные болезни взаимно влияют друг на друга?

N+1
Россияне полюбили избинг. Почему отдых в сельских домиках так нравится молодежи? Россияне полюбили избинг. Почему отдых в сельских домиках так нравится молодежи?

Что такое избинг и почему молодых людей привлекает загородный отдых

Psychologies
Как заниматься анальным сексом, как подготовиться и что делать, если вам не понравилось Как заниматься анальным сексом, как подготовиться и что делать, если вам не понравилось

В чем секрет удачного анального секса? Как получить от него удовольствие?

Psychologies
Носить или не носить: правда ли, что ношение очков ослабляет зрение? Носить или не носить: правда ли, что ношение очков ослабляет зрение?

Ношение очков может еще больше ослабить зрение. Так ли это?

ТехИнсайдер
Семь симптомов диабета Семь симптомов диабета

На ранних стадиях диабет хорошо лечится, главное – не упустить время!

Здоровье
Бюджетные игровые ноутбуки: топ-6 лучших Бюджетные игровые ноутбуки: топ-6 лучших

Игровые ноутбуки, которые не разорят ваш бюджет

CHIP
Природная связь Природная связь

Как общаются существа, у которых нет мозга и вообще нервной системы?

Вокруг света
Яхта особого назначения Яхта особого назначения

Давайте посмотрим, что такого особенного в суперъяхте Eternal Spark

Y Magazine
«Я лечила свои раны»: Виктория Маслова рассказала, как ее спасли съемки в сериале «Триггер» «Я лечила свои раны»: Виктория Маслова рассказала, как ее спасли съемки в сериале «Триггер»

Актриса Виктория Маслова о съемках в сериале «Триггер» и экранной героине

VOICE
Сбой системы Сбой системы

Как вовремя понять, что ребенка пора вести на прием к специалисту?

Лиза
С первого взгляда С первого взгляда

Как расширить маленькую прихожую визуально и не только: подсказки и лайфхаки

Добрые советы
Лираглутид эффективно снизил массу тела при ожирении у детей с шести лет Лираглутид эффективно снизил массу тела при ожирении у детей с шести лет

Терапия лираглутидом вполне эффективна у детей в возрасте 6–11 лет

N+1
Почему евреи мигрировали в США и стали важной частью американской культуры Почему евреи мигрировали в США и стали важной частью американской культуры

Миграция евреев в США оказала значительное влияние на развитие культуры

ТехИнсайдер
Спагетти-монстр Спагетти-монстр

SWM G01F: китайский кроссовер для Cпиди-гонщика

Автопилот
Быть женщиной Быть женщиной

Основательница бренда OLOLOL — как опыт в бизнесе помогает строить модный бренд

Grazia
5 увлекательных книг о мошенниках 5 увлекательных книг о мошенниках

Книги, которые объединяет то, что их главные герои — мошенники и аферисты

Maxim
Мы в моде Мы в моде

Достаточно ли твердо отечественные модные марки стоят на ногах?

VOICE
Лицом к лицу: как мы на самом деле выбираем партнеров Лицом к лицу: как мы на самом деле выбираем партнеров

Как женщины, так и мужчины предпочитали привлекательное лицо красивому телу

Psychologies
Стать психологом – как и зачем? Стать психологом – как и зачем?

О подводных камнях псиобразования и о том, кому можно доверять в этом вопросе

Psychologies
Чем страсть отличается от любви? Чем страсть отличается от любви?

Почему мы выбираем болезненные отношения и как поддерживать интерес к партнеру?

Psychologies
Психологический рубеж: зачем нужен возраст согласия и какие проблемы он не решает Психологический рубеж: зачем нужен возраст согласия и какие проблемы он не решает

Как появился возраст согласия? Могут ли секс-преступники избежать наказания?

Forbes
Где у нас кнопка счастья? Где у нас кнопка счастья?

Есть ли у нас центр наслаждения и как его активировать?

Добрые советы
«Вы не завершили заказ»: шопоголизм нового времени «Вы не завершили заказ»: шопоголизм нового времени

В чем опасность зависимости от маркетплейсов?

Grazia
Время в саду Время в саду

Как успешный предприниматель становится садоводом?

Новый очаг
Индивидуальность: как остаться самим собой в мире, где все стремятся выглядеть одинаково Индивидуальность: как остаться самим собой в мире, где все стремятся выглядеть одинаково

Индивидуальность: что это такое и почему её важно развивать?

Psychologies
За пригоршню сухого корма. Премьера «Черного пса» — вестерна с азиатским акцентом За пригоршню сухого корма. Премьера «Черного пса» — вестерна с азиатским акцентом

Апокалиптичный вестерн, маскирующийся под историю о дружбе человека и собаки

СНОБ
Все побежали — и я побежал: кому нужны онлайн-марафоны, а кому они только навредят Все побежали — и я побежал: кому нужны онлайн-марафоны, а кому они только навредят

Почему не стоит верить марафонам желаний?

VOICE
Открыть в приложении