Почему извлечь пользу из big data получается не у всех?

РБКБизнес

Принять как данные

Автор: Оксана Гончарова

0:00 /
1029.799
Фото: ТАСС

Евгений и Татьяна вернут кредит с большей вероятностью, чем Ипполит и Барбара. Выйдя из отпуска, рабочие вдвое чаще подвергают себя риску производственной травмы… Анализируя большие данные, компании учатся выявлять подобные скрытые закономерности, улучшая свои бизнес-показатели. Направление модное, но извлечь пользу из big data получается не у всех. Причина — отсутствие в компаниях культуры работы с ними.

«Чем более распространенное имя у человека, тем выше шанс, что он заплатит вовремя. Чем больше этажей в твоем доме, тем статистически ты более хороший заемщик. Знак зодиака почти не влияет на вероятность возврата денег, а вот психотип — значительно», — рассказывает о неожиданных закономерностях в поведении заемщиков аналитик Банка Хоум Кредит Станислав Дужинский. Объяснить многие из этих закономерностей он не берется — их выявил искусственный интеллект, обработавший тысячи профилей клиентов.

В этом сила аналитики big data: проанализировав огромный объем неструктурированных данных, программа может обнаружить множество корреляций, о которых самый мудрый аналитик-человек даже не догадывается. У любой компании есть огромное количество неструктурированных данных (big data) — о сотрудниках, клиентах, партнерах, конкурентах, которые можно использовать с пользой для бизнеса: улучшить эффект от рекламных акций, добиться роста продаж, снизить кадровую текучку и т.п.

Первыми работать с big data начали крупные технологические и телекоммуникационные компании, финансовые организации и ретейл, комментирует Рафаил Мифтахов, директор группы технологической интеграции «Делойт», СНГ. Сейчас интерес к таким решениям есть во многих отраслях. Чего удалось добиться компаниям? И всегда ли анализ больших данных позволяет делать ценные выводы?

Нелегкий груз

Банки используют алгоритмы обработки больших данных прежде всего для улучшения качества обслуживания клиентов и оптимизации затрат, а также для управления рисками и борьбы с мошенничеством. «За последние годы в сфере анализа big data произошла настоящая революция, — говорит Дужинский. — Применение машинного обучения позволяет нам намного более точно прогнозировать вероятность невозврата кредита — просрочки в нашем банке составляют всего 3,9%». Для сравнения, на 1 января 2019 года доля ссуд с просроченными платежами свыше 90 дней по кредитам, выдаваемым физлицам, составила, по данным ЦБ, 5%.

Изучением больших данных озадачились даже микрофинансовые организации. «Предоставлять финансовые услуги без анализа больших данных сегодня все равно, что заниматься математикой без цифр, — рассуждает Андрей Пономарев, гендиректор платформы интернет-кредитования Webbankir. — Мы выдаем деньги онлайн, не видя ни самого клиента, ни его паспорта, и в отличие от традиционного кредитования должны не только оценить платежеспособность человека, но и идентифицировать его личность».

Сейчас в базе компании хранится информация по более чем 500 тыс. клиентов. Каждая новая заявка анализируется с учетом этих данных примерно по 800 параметрам. Программа учитывает не только пол, возраст, семейное положение и кредитную историю, но и то, с какого устройства человек заходил на платформу, как вел себя на сайте. Насторожить, например, может то, что потенциальный заемщик не воспользовался кредитным калькулятором или не поинтересовался условиями выдачи займа. «За исключением нескольких стоп-факторов — скажем, мы не выдаем займы лицам моложе 19 лет — ни один из перечисленных параметров сам по себе не является поводом для отказа или согласия в выдаче займа», — поясняет Пономарев. Важна именно совокупность факторов. В 95% случаев решение принимается автоматически, без участия специалистов отдела андеррайтинга.

Анализ big data позволяет выводить интересные закономерности, делится Пономарев. Например, пользователи iPhone оказались более дисциплинированными заемщиками, чем владельцы устройств на базе Android — первые получают одобрение заявок в 1,7 раза чаще. «То, что военнослужащие не возвращают кредиты почти на четверть реже, чем средний заемщик, не было неожиданностью, — говорит Пономарев. — А вот от студентов обязательности обычно не ожидают, а между тем случаи кредитных дефолтов у них встречаются на 10% реже, чем в среднем по базе».

Изучение больших данных позволяет проводить скоринг и для страховщиков. Работающая с 2016 года компания IDX занимается удаленной идентификацией личности и онлайн-проверкой документов. Эти услуги востребованы среди страховщиков грузоперевозок, которые заинтересованы, чтобы грузы пропадали как можно реже. Прежде чем застраховать перевозку товара, страховщик с согласия водителя проверяет его на благонадежность, поясняет Ян Слока, коммерческий директор IDX. Вместе с партнером — петербургской компанией «Контроль рисков» — IDX разработала сервис, который позволяет проверить личность водителя, паспортные данные и права, участие в инцидентах, связанных с утратой груза, и т.п. Проведя анализ базы водителей, компания выявила «группу риска»: чаще всего грузы пропадают у водителей 30–40 лет с большим водительским стажем, часто менявших в последнее время работу. Выяснилось также, что груз чаще всего воруют водители автомобилей, срок эксплуатации которых превышает восемь лет.

В поиске

У ретейлеров задача иная — вычислить клиентов, готовых совершить покупку, и определить наиболее эффективные способы привести их на сайт или в магазин. С этой целью программы анализируют профиль клиентов, данные из их личного кабинета, историю покупок, поисковых запросов и использования бонусных баллов, содержимое электронных корзин, которые они было начали заполнять, да бросили. Аналитика данных позволяет сегментировать всю базу и выделять группы потенциальных покупателей, которым может оказаться интересным то или иное предложение, говорит Кирилл Иванов, директор data-офиса группы «М.Видео-Эльдорадо».

Например, программа выделяет группы клиентов, каждой из которых нравятся разные маркетинговые инструменты — беспроцентный кредит, кешбэк или скидочный промокод. Эти покупатели получают email-рассылку с соответствующей акцией. Вероятность того, что человек, открыв письмо, перейдет на сайт компании, в этом случае значительно увеличивается, отмечает Иванов.

Анализ данных позволяет также повышать продажи сопутствующих товаров и аксессуаров. Система, обработавшая историю заказов других клиентов, выдает покупателю рекомендации, что можно купить вместе с выбранным товаром. Тестирование такого метода работы, по словам Иванова, показало увеличение количества заказов с аксессуарами на 12% и рост оборота аксессуаров на 15%.

Улучшить качество сервиса и повысить продажи стремятся не только ретейлеры. Летом прошлого года «МегаФон» запустил «умный» сервис предложений, в основу которого легла обработка данных миллионов абонентов. Изучив их поведение, искусственный интеллект научился формировать внутри тарифов персональные предложения для каждого клиента. Например, если программа отмечает, что человек активно смотрит на своем устройстве видео, сервис предложит ему расширить объем мобильного трафика. Учитывая предпочтения пользователей, компания предоставляет абонентам безлимитный трафик на их любимые виды интернет-досуга — например, на использование мессенджеров или прослушивание музыки в стриминговых сервисах, на общение в соцсетях или просмотр сериалов.

«Мы анализируем поведение абонентов и понимаем, как меняются их интересы, — объясняет Виталий Щербаков, директор по аналитике больших данных «МегаФона». — Например, в этом году трафик AliExpress вырос в 1,5 раза по сравнению с прошлым годом, и в целом количество заходов на сайты интернет-магазинов одежды растет: в 1,2–2 раза в зависимости от конкретного ресурса».

Другой пример работы оператора с большими данными — платформа для поиска пропавших детей и взрослых «МегаФон Поиск». Система анализирует, какие люди могли находиться рядом с местом пропажи человека, и рассылает им информацию с фотографией и приметами пропавшего. Оператор разрабатывал и тестировал систему совместно с МВД и организацией «Лиза Алерт»: в течение двух минут ориентировки на пропавшего получают более 2 тыс. абонентов, что значительно увеличивает шансы на удачный результат поиска.

Не ходите в ПАБ

Анализ больших данных нашел применение и в промышленности. Здесь он позволяет прогнозировать спрос и планировать продажи. Так, в группе компаний «Черкизово» три года назад внедрили решение на базе SAP BW, которое позволяет хранить и обрабатывать всю информацию по продажам: цены, ассортимент, объемы продукции, акции, каналы сбыта, рассказывает Владислав Беляев, директор по информационным технологиям группы «Черкизово». Анализ накопленных 2 Тб информации не только дал возможность эффективно формировать ассортимент и оптимизировать продуктовый портфель, но и облегчил работу сотрудникам. Например, для подготовки ежедневного отчета по продажам потребовался бы день работы множества аналитиков — по два на каждый продуктовый сегмент. Сейчас этот отчет готовит робот, тратя на все сегменты всего 30 минут.

«В промышленности большие данные эффективно работают в связке с интернетом вещей, — утверждает генеральный директор компании Umbrella IT Станислав Мешков. — На основе анализа данных с датчиков, которыми оснащено оборудование, можно выявлять отклонения в его работе и предотвращать поломки, спрогнозировать производительность».

В «Северстали» с помощью big data пытаются решать и довольно нетривиальные задачи — например, снизить показатели травматизма. В 2019 году на мероприятия по улучшению безопасности труда компания выделила около 1,1 млрд руб. В «Северстали» рассчитывают к 2025 году снизить уровень травматизма на 50% (по сравнению с 2017 годом). «Если линейный руководитель — мастер, начальник участка, начальник цеха — заметил, что работник выполняет те или иные операции небезопасно (не держится за поручни при подъеме по лестнице на промплощадке или не носит все средства индивидуальной защиты), он выписывает ему особое замечание — ПАБ (от «поведенческий аудит безопасности»)», — рассказывает Борис Воскресенский, начальник отдела анализа данных компании.

Проведя анализ данных о количестве ПАБов в одном из подразделений, специалисты компании выявили, что правила техники безопасности чаще всего нарушались теми, кто уже имел несколько замечаний раньше, а также теми, кто незадолго до инцидента находился на больничном или в отпуске. Нарушения в первую неделю после выхода из отпуска или с больничного оказались вдвое выше, чем в последующее время: 1 против 0,55%. А вот работа в ночную смену, как выяснилось, не влияет на статистику ПАБов.

В отрыве от реальности

Создать алгоритмы обработки больших данных — не самая трудная часть работы, отмечают представители компаний. Гораздо сложнее понять, как эти технологии можно применить в контексте каждого конкретного бизнеса. Именно здесь кроется ахиллесова пята аналитиков компаний и даже внешних провайдеров, которые, казалось бы, имеют наработанную экспертизу в области big data.

«Я часто встречал специалистов по анализу больших данных, которые были прекрасными математиками, но не обладали необходимым пониманием бизнес-процессов», — рассказывает Cергей Котик, директор по развитию компании GoodsForecast. Он вспоминает, как два года назад его компании довелось участвовать в конкурсе по прогнозированию спроса для одной федеральной розничной сети. Был выбран пилотный регион, по всем товарам и магазинам которого участники строили прогнозы. Затем прогнозы сравнивались с фактическими продажами. Первое место занял один из российских интернет-гигантов, известный своей экспертизой в машинном обучении и анализе данных: в своих прогнозах он показал минимальное отклонение от фактических продаж.

Но когда сеть стала изучать его прогнозы детальнее, выяснилось, что с точки зрения бизнеса они абсолютно неприемлемы. Компания представила модель, которая выдавала планы продаж с систематическим занижением. Программа поняла, как минимизировать вероятность ошибки в прогнозах: безопаснее занижать продажи, поскольку максимальная ошибка может составить 100% (отрицательных продаж не бывает), а вот в сторону перепрогноза она может быть сколь угодно большой, поясняет Котик. Другими словами, компания представила идеальную математическую модель, которая в реальных условиях привела бы к полупустым магазинам и огромным убыткам от недопродаж. В результате в конкурсе победила другая компания, чьи расчеты можно было применить на практике.

«Авось» вместо big data

Технологии больших данных актуальны для многих отраслей, но активное их внедрение происходит не везде, замечает Мешков. Например, в здравоохранении есть проблема с хранением данных: информации накоплено много и она регулярно обновляется, но по большей части эти данные еще не оцифрованы. Есть также много данных в госструктурах, но они не объединены в общий кластер. Разработка единой информационной платформы Национальной системы управления данными (НСУД) как раз направлена на то, чтобы решить эту задачу, говорит эксперт.

Впрочем, Россия — далеко не единственная страна, где в большинстве организаций важные решения принимаются на основе интуиции, а не анализа больших данных. В апреле прошлого года компания «Делойт» провела опрос среди более чем тысячи руководителей крупных американских компаний (со штатом от 500 человек) и выяснила, что 63% опрошенных знакомы с технологиями big data, но не имеют всей необходимой инфраструктуры, чтобы их применять. Между тем среди 37% компаний с высоким уровнем аналитической зрелости почти половина значительно превысили бизнес-цели за последние 12 месяцев.

Исследование выявило, что помимо сложности внедрения новых технических решений важной проблемой в компаниях является отсутствие культуры работы с данными. Не стоит ждать хороших результатов, если ответственность за решения, принятые на основе big data, будет возлагаться только на аналитиков компании, а не на всю компанию в целом. «Сейчас компании ищут интересные сценарии использования больших данных, — говорит Мифтахов. — При этом внедрение некоторых сценариев требует инвестиций в системы сбора, обработки и контроля качества дополнительных данных, которые ранее не анализировались». Увы, «аналитика — пока еще не командный вид спорта», — признают авторы исследования.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Планы на будущее Планы на будущее

Что о развитии автотранспорта думают в руководстве автомобильных компаний

Популярная механика
Как приманить в дом мужчину — рассказывает мастер фэншуй Как приманить в дом мужчину — рассказывает мастер фэншуй

Как привлечь в дом мужскую энергию, чтобы она там и осталась

Cosmopolitan
Кто горы наворотил? Кто горы наворотил?

Поколения губок, мириады бактерий и водорослей – создатели земной коры

Популярная механика
Приз за тело: как устроены фитнес-марафоны и почему они подходят не всем Приз за тело: как устроены фитнес-марафоны и почему они подходят не всем

Можно ли доверять инстаграм-аккаунтам фитнес-марафонов?

РБК
Выйти из тени Выйти из тени

В тени гигантов набирает силу новый экзотический цветок – космонавтика Индии

Популярная механика
«Праздничные» дни «Праздничные» дни

Боль во время месячных многие воспринимают как неизбежное и вынужденное явление

Здоровье
Ким Фурнэ: «Люди не хотят переплачивать банкам» Ким Фурнэ: «Люди не хотят переплачивать банкам»

Почему от развития финансовых технологий выиграют прежде всего бедные страны

РБК
С чистого листа С чистого листа

Ани Лорак — настоящая дива нашего шоу-бизнеса

OK!
20 вещей, которые могут тебе пригодиться в постели 20 вещей, которые могут тебе пригодиться в постели

Объекты и явления, при помощи которых твой секс будет еще великолепнее

Maxim
Как разговаривать с тем, кто стремится во всем вас переплюнуть, и не сойти с ума Как разговаривать с тем, кто стремится во всем вас переплюнуть, и не сойти с ума

Несколько советов, которые, возможно, облегчат ваше общение с хвастуном

Psychologies
Мощные вещи Мощные вещи

Какова движущая сила Четвертой промышленной революции?

РБК
Сумки, камни и вино: правила нестандартных инвестиций Сумки, камни и вино: правила нестандартных инвестиций

Нестандартные активы дорожают, но вклад в них требует серьезных компетенций

Forbes
«Мы свидетели нового дополненного мира» «Мы свидетели нового дополненного мира»

Подборка высказываний футурологов и предпринимателей об Индустрии 4.0

РБК
Почему мы избегаем походов к гинекологу: 5 основных причин Почему мы избегаем походов к гинекологу: 5 основных причин

Почему мы избегаем походов к гинекологу — в ущерб собственному здоровью

Psychologies
Норма крепости Норма крепости

Forbes впервые оценил надежность российских застройщиков

Forbes
Закрытый показ Закрытый показ

Что приобрел актер, лишившись фирменного безумного взгляда

GQ
Геворк Вермишян: «5G — Это вызов, и мы его приняли» Геворк Вермишян: «5G — Это вызов, и мы его приняли»

Когда в России будет запущено пятое поколение мобильной связи?

РБК
Что случится, если весь лед на Земле растает за одну ночь: мировой потоп Что случится, если весь лед на Земле растает за одну ночь: мировой потоп

Что, если ледники полностью превратятся в жидкую воду всего за одну ночь

Популярная механика
От большого к малому От большого к малому

Если ты хочешь лидерства, то должен бежать вдвое быстрее других

РБК
Съезд победителей: каким станет российское вино под присмотром власти Съезд победителей: каким станет российское вино под присмотром власти

Мероприятие впервые переместилось из Краснодарского края в Крым

Forbes
Вторая жизнь бетона Вторая жизнь бетона

Как можно строить дома из обломков других домов

Forbes
Крыло с обратной стреловидностью: все Крыло с обратной стреловидностью: все

Вопрос – зачем нужна обратная стреловидность крыла?

Популярная механика
Маячок манипулятора. Как распознать и побороть газлайтинг на рабочем месте Маячок манипулятора. Как распознать и побороть газлайтинг на рабочем месте

Газлайтеры на работе — чрезвычайно токсичные персонажи

Forbes
Америкэн бой, уеду с тобой Америкэн бой, уеду с тобой

Западные знаменитости охотно поддаются чарам русских женщин

StarHit
Электрическая ракета, которая изменит войну Электрическая ракета, которая изменит войну

Барражирующие боеприпасы «Ланцет», которые могут в корне изменить войны будущего

Популярная механика
130 км/ч, права по-новому и штрафы от города: водителей ждут перемены 130 км/ч, права по-новому и штрафы от города: водителей ждут перемены

О важных изменениях в области дорожного движения

РБК
1917, 1931, 2019. Почему искусство заканчивается 1917, 1931, 2019. Почему искусство заканчивается

Порой искусство замолкает, так уже случалось в нашей истории

СНОБ
Свежий взгляд: как быстро убрать покраснение глаз в домашних условиях Свежий взгляд: как быстро убрать покраснение глаз в домашних условиях

Как устранить симптомы усталости и снять воспаление глаз быстро и эффективно

Cosmopolitan
«Никакой экосистемы TON не существует»: почему SEC остановила ICO Telegram и что это значит для проекта Дурова «Никакой экосистемы TON не существует»: почему SEC остановила ICO Telegram и что это значит для проекта Дурова

SEC добилась временного судебного запрета в отношении Telegram Group Inc.

Forbes
Какая должна быть температура процессора Какая должна быть температура процессора

Что такое троттлинг, как работает процессор, как снизить температуру ЦПУ

CHIP
Открыть в приложении