Время ускорять, время сталкивать
В Подмосковной Дубне продолжается строительство комплекса NICA. Популярная механика выяснила, что собираются искать на нем ученые и когда ждать новых открытий.
На встречу мы сильно опоздали. Ночью ударил внезапный мороз, и паром, который должен был перевезти нас через Волгу, задержался часа на полтора, пока расчищали наросший у берега лед. Зато появилось время на то, чтобы обстоятельно объяснить всей нашей команде, для чего пришлось грузить в багажник фототехнику и с раннего утра отправляться на дальний край Подмосковья. Начать пришлось издалека – с самого рождения мира.
Три минуты космоса
Вселенная возникла около 13,8 млрд лет назад, и уже вскоре в ней зажглись первые светила. Самые ранние звезды, которые способны различить современные телескопы, появились всего лишь 200 млн лет спустя после Большого взрыва. Но древнейший свет, который мы можем видеть, еще старше и произведен не ими. Это фотоны микроволнового фона, которые сохранились с того момента, когда наш мир остыл до приемлемых температур, около 3000 К. Электроны наконец смогли удерживаться на орбитах вокруг ядер и образовали первые атомы.
До того времени космос наполняла раскаленная плазма, и любой излученный фотон моментально рассеивался в ее непроницаемом тумане. Только через 379 тыс. лет с образованием атомов пространство расчистилось и по нему начало распространяться излучение. Этот реликтовый фон регистрируют радиотелескопы, но все, происходившее ранее, остается за непроницаемой границей, дальше которой нет ни фотонов, ни, соответственно, телескопов, которые могли бы их увидеть.
Самые первые этапы развития мира, которые предшествовали образованию атомов (рекомбинации), мы изучаем в основном теоретически. Они были краткими, но бурными: уже через 10–43 с после Большого взрыва появились первые частицы, а через 10–35 с Вселенная начала расширяться в экспоненциальном режиме инфляции. Раздувавшийся мир был заполнен невероятно плотной и горячей смесью, состоящей по большей части из кварков (впоследствии они образуют нейтроны и протоны) и глюонов, которые нужны для соединения кварков друг с другом.
Вскоре такое объединение произошло; фазовый переход совершился резко, подобно росту кристаллов в химической грелке. С начала мироздания прошло всего три минуты, а кварк-глюонная плазма исчезла. Сегодня она, возможно, существует лишь в недрах самых плотных объектов, таких как нейтронные звезды. Но на ее месте появились протоны и нейтроны обычной адронной материи, а следом – первые атомы, звезды, галактики.
Все это теория, хотя многие ее положения удается подтвердить на практике. Следы инфляции сохранились в слабых аномалиях реликтового фона, а также в крупномасштабной структуре Вселенной; в огромных наземных коллайдерах получена кварк-глюонная плазма. Однако загадкой остается сам момент «выпадения» из нее адронов. Как и с химической грелкой, этот момент трудно уловить, и даже условия, при которых происходит фазовый переход, в точности неизвестны.
Существующие ускорители частиц для этого не подходят. Так, знаменитый Большой адронный коллайдер возводился для решения совершенно других задач – прежде всего поисков бозона Хиггса. Сталкивающаяся в нем материя оказывается чересчур горячей и недостаточно плотной для попадания в область фазового перехода. Чтобы поймать его, нужны новые инструменты, и работа над ними уже идет. Проходит модернизацию американский RHIC, в Германии возводится новый FAIR. Развернуто строительство и в подмосковной Дубне: Объединенный институт ядерных исследований (ОИЯИ) готовит к работе ускорительный комплекс NICA.