Вездесущие карлики
Как в нашу жизнь вторглись и стали незаменимыми наночастицы, зачем они нужны и чем опасны, рассказывает Сергей Овчинников, заслуженный деятель науки России, доктор физико-математических наук, профессор, руководитель научного направления «магнетизм» ФИЦ «Красноярский научный центр» СО РАН.
Конец XX и начало XXI столетий ознаменовались становлением и развитием новых областей науки, связанных с изучением материалов, имеющих одно, два или три измерения, уменьшенных до наномасштаба. Приставка «нано-» происходит от греческого слова «nanos» (карлик). В 1947 году на 14-й конференции Международного союза теоретической и прикладной химии термин «нано» был официально принят для описания размеров порядка 10–9 см, он стал употребляться во многих областях современной науки и технологии.
Могут лечить рак
По составу и функциональным возможностям огромное разнообразие наночастиц в настоящее время принято разделять на несколько классов: квантовые точки, фуллерены и наночастицы. Каждый из них имеет широкие области применения. Мы остановимся лишь на некоторых.
В последние годы возникла и развилась новая область медицины — наномедицина, связанная с применением наночастиц в диагностике, терапии и фармацевтике. Например, благодаря эффекту поверхностного плазмонного резонанса наночастицы благородных металлов эффективно поглощают свет и преобразуют его в тепло, которое можно использовать для селективной фототермической терапии рака. Магнитные наночастицы, движущиеся в переменном магнитном поле, избирательно уничтожают раковые клетки путем механического воздействия. Полые или пористые наночастицы могут служить контейнерами для адресной доставки лекарств. Наночастицы используются для визуализации клеток в биосенсорах ДНК, углеводов, белков и ионов тяжелых металлов для обнаружения бактерий и вирусов.
Магнитные наночастицы, например на основе Gd, могут улучшить качество изображения и контрастность в магнитно-резонансной томографии (МРТ). Так, наночастицы GdPO4 были использованы для обнаружения опухолей с помощью МРТ при количестве введенных наночастиц в десять раз меньше, чем при обычно используемом агенте.
Освещают экраны, удобряют почву
Наночастицы — квантовые точки, такие как CdS и ZnSe, используются в современных дисплеях, чтобы получить более высокую яркость, контрастность и большие размеры экранов. Наночастицы используются в сельском хозяйстве в качестве наноудобрений и нанопестицидов. Наноудобрения применяются в меньших количествах, чем обычные химические удобрения, но при этом имеют более высокую эффективность благодаря тому, что они способны выделять питательные вещества именно тогда и там, где они необходимы растениям. Таким образом, они ограничивают избыточное количество удобрений преобразованием его в газообразное состояние и предотвращают утечку в грунтовые воды.
Как и всякое научно-техническое достижение, нанотехнологии связаны с возможными опасностями для людей, иногда вымышленными, иногда реальными. Поэтому и на международном уровне, и в каждой стране организованы нанотоксикологические исследования и государственное регулирование производства и использования продукции нанотехнологий. Система оценки риска наноматериалов включает обширный комплекс физико-химических, биохимических, молекулярно-биологических, токсикологических тестов и специальных исследований, позволяющих провести оценку их воздействия на биологические объекты.
Такие исследования проводятся, например, в Институте химической физики им. Н. Н. Семенова РАН, НИИ экологии человека и гигиены окружающей среды им. А. Н. Сысина, Федеральном исследовательском центре Института цитологии и генетики СО РАН и других.
Маленькие, да удаленькие
В чем же потенциальная опасность наночастиц? Малый их размер, сопоставимый с размерами молекул, обеспечивает наночастицам уникальную проникающую способность, а их большая удельная площадь поверхности обеспечивает взаимодействие огромного количества активных центров на поверхности с различными веществами, и все это невидимо для глаз и приборов с оптическим разрешением. А если представить, что даже в самом малом объеме, например в точке на кончике зубочистки, содержится огромное количество отдельных частиц, то становятся понятными страхи их применения.
Как один из ведущих центров страны в области физики магнитных явлений, наш институт сосредоточился на изучении в основном магнитных наночастиц, то есть частиц, ядро которых или вся частица полностью характеризуются наличием магнитного порядка. В основном это наночастицы различных ферритов. Техническое оснащение института позволяет визуализировать частицы, определять их размеры, форму, структуру, фазовый и химический состав и даже пространственное распределение элементов в них, изучать магнитные и магнитооптические свойства наночастиц в большом диапазоне магнитных полей и температур.