Очерк второй. Эйнштейн против Паули. Единая теория поля

Наука и жизньНаука

Трагедия Эйнштейна, или счастливый Сизиф

Очерк второй. Эйнштейн против Паули. Единая теория поля

Кандидат физико-математических наук, доктор естествознания (Германия) Евгений Беркович

Альберт и Эльза Эйнштейн (справа) и ассистент Эйнштейна Вальтер Майер (крайний слева) с коллегами из Калифорнийского технологического института. Калифорния, США, 1931 год. Фото: Архив издательства Moos & Partner, Мюнхен.

«Путём чистых спекуляций»

Альберт Эйнштейн расходился во мнениях с коллегами-физиками не только в отношении полноты квантовой механики. Второй причиной противостояния Эйнштейна физическому сообществу была верность единой теории поля, из которой как следствие вытекали бы законы электромагнетизма, тяготения и квантовой механики. Поискам этой теории — оказавшимся, увы, безрезультатными — учёный посвятил тридцать лет жизни. Большинство учёных относились к единой теории скептически.

Трудно сказать, когда Альберт Эйнштейн впервые стал размышлять над проблемой единой теории поля. В своей нобелевской лекции, прочитанной 11 июля 1923 года не в Стокгольме, где обычно выступают нобелевские лауреаты, а в Гётеборге, на собрании естествоиспытателей Скандинавии, Эйнштейн рассказал о первых попытках построить всеобъемлющую теорию: «Теперь особенно живо волнует умы проблема единой природы гравитационного и электромагнитного полей. Мысль, стремящаяся к единству теории, не может примириться с существованием двух полей, по своей природе совершенно независимых друг от друга. Поэтому делаются попытки построить такую математически единую теорию поля, в которой гравитационное и электромагнитное поля рассматриваются лишь как различные компоненты одного и того же единого поля, причём его уравнения, по возможности, уже не состоят из логически независимых друг от друга членов»1.

Альберт Эйнштейн
летом 1934 года. Фото:
Архив Лотты Якоби,
университет
Нью-Гемпшира, США.

В той же лекции автор теории относительности и создатель квантовой теории фотоэффекта, за что ему в 1922 году и была присуждена Нобелевская премия за 1921 год, формулирует программу, ставшую для него основным делом жизни. Напомню, что в то время ещё не были открыты ни матричная, ни волновая механика. Но Эйнштейн уже в 1923 году ставит задачу соединить квантовую физику с теорией относительности: «Наконец, не следует забывать, что теорию элементарных электрических образований нельзя отделять от вопросов квантовой теории. Перед лицом этой наиболее глубокой физической проблемы современности пока оказалась бессильной и теория относительности. Но если когда-нибудь в результате решения квантовой проблемы форма общих уравнений и претерпит глубокие дальнейшие изменения, — пусть даже совершенно изменятся [те] самые величины, с помощью которых мы описываем элементарные процессы, — от принципа относительности отказываться никогда не придётся; законы, выведенные с его помощью до сих пор, сохранят своё значение по меньшей мере в качестве предельных законов»2.

Задача, поставленная Эйнштейном, состояла не только в том, чтобы в одной модели объединить две существовавшие тогда теории поля: электромагнетизм и гравитацию (последняя стала теорией поля именно в общей теории относительности, для Ньютона и его последователей сила тяжести была проявлением пресловутого «дальнодействия»). Из единой теории поля должны вытекать существование и характеристики известных элементарных частиц — электронов и протонов, — а также основные мировые константы: скорость света, заряд электрона, квант действия…

Сейчас единую теорию поля в понимании Эйнштейна немного иронично называют «теорией всего». Она до сих пор окончательно не построена, несмотря на многочисленные попытки покорить эту недосягаемую научную вершину. С позиций сегодняшнего состояния науки у Эйнштейна было мало шансов построить желанную общую теорию: ведь в его время были известны только два поля, которые хотелось объединить, и ничего не знали ни о сильном, ни о слабом взаимодействии. Кроме электронов и протонов никто не представлял себе других элементарных частиц — нейтронов, нейтрино… Оптимизм и веру в успех вселяли грандиозные результаты общей теории относительности. Поэтому сам Эйнштейн был уверен в скором достижении цели. И не он один.

В самом начале к проблеме единой теории поля обратились, как ни странно, математики. Герман Вейль, который во второй половине 1920-х годов помог Эрвину Шрёдингеру в построении волновой механики, в 1918 году предложил обобщить геометрию общей теории относительности, что позволило бы, по его мнению, включить в новую схему и электромагнитные явления.

Эйнштейн и Вейль были хорошо знакомы. В 1913 году двадцатидевятилетний приват-доцент Гёттингенского университета Герман Вейль принял приглашение стать ординарным профессором цюрихского Политехникума, где тогда ещё работал профессор Эйнштейн перед своим переездом в Берлин в 1914 году. Так что первые шаги создания общей теории относительности проходили на глазах любимого ученика Гильберта.

В 1918 году Герман Вейль опубликовал книгу «Пространство, время, материя. Лекции по общей теории относительности», которую высоко оценил Эйнштейн. В рецензии на книгу он писал: «Каждому, кто пожелает сам поработать в этой области, рецензируемая книга окажет неоценимую услугу, не говоря уже о той радости, которую доставит её изучение. <…> Труд, затраченный на прочтение этой книги, окупится с лихвой, и вряд ли найдётся кто-нибудь, кто не почерпнёт для себя из неё хоть что-нибудь новое»3.

Правда, создатель общей теории относительности замечает, что у «прирождённого математика», как он называет автора книги, не всё гладко с физической картиной мира. В той же рецензии Эйнштейн отмечает: «Для полноты следует упомянуть, что я не совсем согласен с точкой зрения автора по поводу закона сохранения энергии, а также по вопросу о соотношении между утверждениями теоретической физики и действительностью»4.

Вскоре после завершения книги Вейль написал статью, в которой сделал попытку построить единую теорию, объединяющую гравитацию и электромагнетизм. Рукопись он послал Эйнштейну с просьбой представить её Прусской академии наук для публикации.

Теодор Калуца,
ориентировочно
1940-е годы. Фото:
Архив P. Roquette,
Heidelberg (Oberwolfach
Photo Collection).

Первая реакция прусского академика была восторженной: «Это первоклассный ход гения»5. Но достаточно быстро Эйнштейн заметил главный недостаток работы: из неё следовало, что длина предметов и показания часов зависят от предыстории. Если бы это было так, то атомы водорода, например, имели бы разный спектр в зависимости от их происхождения, что явно противоречит опыту. Берлинский профессор элегантно отметил этот дефект теории в письме цюрихскому коллеге: «Ваши рассуждения отличаются чудесной законченностью. Если не принимать во внимание несоответствие с действительностью, то это грандиозное достижение мысли»6.

От первого знакомства с попыткой создания единой теории поля у Эйнштейна осталось ощущение, что одной математикой проблему не решить, нужна глубокая физическая идея. В письме от 6 июня 1922 года Эйнштейн сообщает «прирождённому математику» Герману Вейлю: «Я считаю, что для действительного продвижения вперёд нужно вновь подсмотреть в природе некоторые общие принципы»7.

Однако новая идея пришла снова от математика. В 1919 году профессор-математик Теодор Калуца из Кёнигсберга предложил добавить пятое измерение к четырём измерениям пространства–времени, введённым ещё Германом Минковским. Пятое измерение открывало новые возможности для формулирования единой теории поля, включающей гравитацию и электромагнетизм.

Сейчас этот подход известен как теория Калуцы — Кляйна. Свой вклад в неё внёс в 1926 году Оскар Кляйн, в то время ассистент Нильса Бора. Оскар надеялся не только получить объединение электромагнетизма и гравитации, но и вывести из единой теории поля основные положения квантовой механики, только-только становящейся на ноги новой научной теории.

Эйнштейн обратил внимание на идею пятого измерения ещё до дополнений Кляйна. В апреле 1919 года берлинский профессор писал коллеге из Кёнигсберга: «Идея создания (единой теории поля. — Прим. Е. Б.) с использованием пятимерного цилиндрического мира никогда не приходила мне в голову… На первый взгляд эта идея нравится мне чрезвычайно»8.

В начале мая Эйнштейн снова написал Калуце: «Формальная целостность Вашей теории просто поражает»9. Правда, в Докладах Прусской академии наук работа Калуцы была напечатана лишь два года спустя. Альберт Эйнштейн представил статью 8 декабря 1921 года. Причина такой задержки мне не известна.

Какое-то время Эйнштейн полагал, что на этом пути можно прийти к желанной единой теории поля, из которой следовало бы, в частности, существование электронов и протонов. В июне 1922 года Альберт пи-сал Герману Вейлю: «Я чую, что это предложение ближе всего к реальности»10.

Герман Вейль,
ориентировочно
1940-е годы.
Фото: ETH-Bibliothek
Zürich, Bildarchiv

Однако достаточно быстро Эйнштейн понял, что вывести из уравнений Калуцы существование электрона не удаётся. Математика снова, как и у Вейля, была элегантной и красивой, но имела мало общего с физическим миром.

Подобная судьба ожидала и предложение Артура Эддингтона, прославившегося тем, что британские астрономические экспедиции в 1919 году, наблюдавшие под его руководством солнечное затмение в Южном полушарии, экспериментально подтвердили выводы общей теории относительности. От физических экспериментов Эддингтон решил перейти к теории и год спустя опубликовал книгу «Пространство, время, гравитация», написанную явно под влиянием идей Германа Вейля. Следующим шагом Эддингтона было обобщение подхода Вейля, при котором снимались некоторые искусственные ограничения в использовании римановой геометрии. В качестве основного математического понятия выступала так называемая аффинная связность11. В аннотации к статье, содержащей эти результаты, автор писал: «Обобщение евклидовой геометрии позволяет исследовать гравитацию. Обобщение римановой геометрии позволяет изучать электромагнитную силу. Что ещё можно получить при новом обобщении? Ясно, что немаксвелловские связывающие силы, которые удерживают электрон. Но это сложная проблема, я не могу сказать, удастся ли нынешнему обобщению представить материалы для её решения. Предлагаемая работа не претендует на поиск неизвестных физических законов, в ней ставится лишь задача консолидации законов известных»12.

Эйнштейн оценил попытку Эддингтона поначалу как чисто математическое построение. Герману Вейлю Альберт писал в июне 1922 года о статье английского астронома: «Прекрасная рама, но абсолютно не видно, чем её можно было бы заполнить»13.

Отсутствие необходимого физического обоснования у попыток Вейля и Эддингтона соединить в одной теории электромагнетизм и гравитацию подчёркивал Эйнштейн в письме Цангеру 18 июня 1922 года: «В научном плане пока ничего особенного. Гравитационное поле всё ещё стоит независимо от электромагнитного. То, что в этом отношении сделали Вейль и Эддингтон, прекрасно, но неверно. Истину невозможно найти путём чистых спекуляций. Пути Господни неисповедимы. Мне непонятно, почему мы считаем, что скоро раскроем тайны квантов. В моей голове в этом отношении не стало светлее, так велико число отдельных фактов, которые в этой области надо увязать воедино»14.

Что касается квантов, то ровно через три года, в июне 1925-го, Вернер Гейзенберг на острове Гельголанд совершит прорыв, закончившийся знаменитой «работой трёх» и созданием квантовой механики, которую Эйнштейн так и не признает законченной теорией. А вот с подходами Вейля и Эддингтона к единой теории поля он взялся разобраться сам. После основательных раздумий Эйнштейн увидел здесь ещё не раскрытые возможности и решил пройти путь, намеченный коллегами-математиками, до конца. Хорошим стимулом для такой работы послужило путешествие в Японию, особенно долгое морское плавание на роскошном океанском лайнере. Ещё в апреле 1922 года Альберт писал другу Цангеру в Цюрих: «Несказанно мечтаю об одиночестве, поэтому охотно еду в октябре в Японию, так как это означает 12 недель покоя на море»15.

Путешествие не разочаровало любителя одиночества. В письме Нильсу Бору от 10 января 1923 года, написанном на борту корабля, Эйнштейн хвалил «великолепное существование для человека, склонного к раздумьям — словно в монастыре»16.

Правда, и развлечений на борту было предостаточно. В дневнике, который Альберт вёл во время этого путешествия, читаем: «В последний жаркий день — маскарад пассажиров. Японцы — виртуозы в этом искусстве. В последнее время познакомился с приятными людьми. Греческий посланник, который из Японии возвращается домой, симпатичная английская вдова, которая, несмотря на мои протесты, жертвует фунт Иерусалимскому университету; не забыть супружескую пару Окюта, утончённые, обходительные японские торговцы, с которыми мы много болтали на корабле»17.

Артур Эддингтон.
Фото: Библиотека
Конгресса, США

И в другие дни культурная жизнь на палубах и в залах океанского лайнера не затихала. Но пассажир Эйнштейн в развлечениях, как правило, не участвовал: он напряжённо работал. Корабль миновал Шанхай, Гонконг, Сингапур, Коломбо, но местные достопримечательности не интересовали профессора, которому всего два месяца назад официально присудили Нобелевскую премию по физике за 1921 год. На церемонию награждения в Стокгольме Эйнштейн не поехал. Сейчас он был целиком поглощён новой работой — ему казалось, что цель почти достигнута — единая теория поля вот-вот будет построена. В упомянутом письме Бору от 10 января 1923 года Эйнштейн не скрывает торжества: «Уверен, что я наконец понял связь между электричеством и гравитацией»18.

«Холодная, как мрамор, улыбка природы»

Когда в первый день февраля 1923 года океанский лайнер «Гаруна Мару», построенный в Японии годом раньше, прибыл в египетский Порт-Саид, статья Эйнштейна «К общей теории относительности» была готова. В конце её автор приписал название лайнера и месяц: январь 1923 года. Эта работа развивала идеи Вейля и Эддингтона, соединяя их с общим подходом Гамильтона, принятым в классической механике.

Новый текст казался Эйнштейну столь важным, что он, не медля ни дня, прямо из Порт-Саида отправил рукопись в Берлин, где его верный друг и коллега Макс Планк уже 15 февраля представил статью Эйнштейна для публикации в Докладах Академии.

Статья заканчивалась предельно оптимистично: «Изложенное выше исследование показывает, что общая идея Эддингтона в соединении с принципом Гамильтона приводит к теории, почти полностью свободной от произвола, отражающей наши современные знания о гравитации и электричестве и объединяющей оба вида поля по-настоящему, законченным образом»19.

Вернувшись в Берлин, Эйнштейн выступил в Прусской академии с докладом об объединении в единое целое гравитационного и электромагнитного полей, опубликовал ещё две работы, развивавшие этот подход.

Активность автора теории относительности не осталась незамеченной журналистами. Мир не забыл эйфорию и всеобщее ликование после подтверждения новой теории тяготения в 1919 году. Теперь от Эйнштейна ждали ещё одной сенсации. Газета «The New York Times» вышла 27 марта 1923 года с заголовком: «Эйнштейн описывает свою новейшую теорию». Правда, один из подзаголовков гласил: «Дилетантам не понять». Но сам автор «новейшей теории» успокоил журналистов: «Я могу в одном предложении всё объяснить. Речь идёт о связи между электричеством и гравитацией»

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Царь-птица Царь-птица

К этим гордым и боевым птицам мы относимся с поразительным пренебрежением

Популярная механика
«Нечто совершенно новое»: как стартап из Калифорнии строит развлекательную империю для поколения Z «Нечто совершенно новое»: как стартап из Калифорнии строит развлекательную империю для поколения Z

Молодой стриминговый сервис Caffeine завоевывает сердца молодого поколения

Forbes
6 признаков глупого человека 6 признаков глупого человека

Как понять, кого нужно избегать? Да и нужно ли на самом деле?

Psychologies
Самые дорогие клубы НБА — 2020. Рейтинг Forbes Самые дорогие клубы НБА — 2020. Рейтинг Forbes

НБА остается привлекательным бизнесом для владельцев клубов

Forbes
Почему Генрих — не Генрих, а Людовик — не Людовик? Почему Генрих — не Генрих, а Людовик — не Людовик?

О проблеме перевода или огласовки иностранных имён собственных

Наука и жизнь
Как нельзя носить кроссовки: популярные ошибки, которые испортят твой образ Как нельзя носить кроссовки: популярные ошибки, которые испортят твой образ

Сегодня кроссовки носят с чем угодно: с джинсами, костюмами, платьями

Cosmopolitan
Техпарад Техпарад

Новости мира науки и техники

Популярная механика
Самые фриковые охотницы на богатых мужей из шоу «Давай поженимся» Самые фриковые охотницы на богатых мужей из шоу «Давай поженимся»

Какие девушки предпочитают открывать охоту на перспективных мужчин

Cosmopolitan
Лена Горностаева Лена Горностаева

Какую часть мужского тела Лена Горностаева считает самой сексуальной?

Playboy
«Я готов к большим переменам» «Я готов к большим переменам»

Макс Барских о новых альбомах, самопознании и одиночестве

OK!
Эйнштейн против Бора. Квантовая механика Эйнштейн против Бора. Квантовая механика

Со смертью Эйнштейна мир стал другим

Наука и жизнь
Знаменитости, которые отказались от рыцарского титула Знаменитости, которые отказались от рыцарского титула

Кто еще, кроме Боуи, сказал твердое «нет» королеве Англии?

Maxim
Большая ракета Илона Маска Большая ракета Илона Маска

Сверхтяжелая ракета Big Falcon Rocket готовится вытеснить все прошлые разработки

Популярная механика
Как помочь ребенку выбрать занятие и поддерживать к нему интерес Как помочь ребенку выбрать занятие и поддерживать к нему интерес

Каждый родитель желает своим детям счастливого детства и перспективного будущего

Psychologies
Техника физиков Техника физиков

Как выпускники превращают онлайн-школу английского в образовательный холдинг

Forbes
Плохая девочка Билли Айлиш: как нарушить все правила и заработать $8 млн к 18 годам Плохая девочка Билли Айлиш: как нарушить все правила и заработать $8 млн к 18 годам

Музыкальный критик Антон Макарский разбирается с феноменом Билли Айлиш

Forbes
Нулевая ступень Нулевая ступень

Весной 2019 года в небо поднялся самолет с самыми большими крыльями в истории

Популярная механика
Как найти новое поколение антибиотиков — ответ получен Как найти новое поколение антибиотиков — ответ получен

Нам необходимы новые антибиотики, ученые их найдут — это только вопрос времени

Популярная механика
Близорукий мозг: почему мы зря обесцениваем свое будущее Близорукий мозг: почему мы зря обесцениваем свое будущее

Фрагмент из книги «Сила эмоций» издательства «Манн, Иванов и Фербер»

Forbes
Стендап и этика: можно ли комику Луи Си Кею шутить про насилие, а нам — смеяться Стендап и этика: можно ли комику Луи Си Кею шутить про насилие, а нам — смеяться

Как стендап может существовать в эпоху политкорректности и #MeToo

Forbes
40 лет «Москва слезам не верит» 40 лет «Москва слезам не верит»

Вообще, здесь не плакать, а смотреть надо! Ведь у фильма юбилей

Лиза
Княгиня или актриса? Удивительные факты о трагической судьбе Грейс Келли Княгиня или актриса? Удивительные факты о трагической судьбе Грейс Келли

Грейс Келли - одна из легендарных актрис, которая затем стала княгиней Монако

Cosmopolitan
Сотворение Де Ниро Сотворение Де Ниро

Корреспондент Esquire отправился на встречу с Робертом Де Ниро

Esquire
Эпизод шестой: Шантаж и римский вопрос Эпизод шестой: Шантаж и римский вопрос

Папа ошибается с изданием Библии и шантажирует премьер-министра Италии

Esquire
Остров Остров

Корреспондент «Вокруг света» отправился на Курильскую гряду в экспедицию

Вокруг света
Как стать бодипозитивной за 60 секунд (даже если ты против) Как стать бодипозитивной за 60 секунд (даже если ты против)

Как быстро и просто стать сторонником бодипозитива и зачем это нужно

Cosmopolitan
В ЦОДД предложили ввести 50 км/ч в городе. К чему это приведет? В ЦОДД предложили ввести 50 км/ч в городе. К чему это приведет?

Михаил Кизлык объяснил, почему скорость в городе должна быть ниже

РБК
Смерть сына, секс-скандал и самолеты: захватывающая биография Джона Траволты Смерть сына, секс-скандал и самолеты: захватывающая биография Джона Траволты

По биографии Джона Траволты можно снять необычное кино

Cosmopolitan
Летчики, солдаты, геймеры: как работают операторы БПЛА Летчики, солдаты, геймеры: как работают операторы БПЛА

Сочетание «человек–машина» создает проблемы и вызывает ряд непростых вопросов

Популярная механика
Почему мы путаем право и лево Почему мы путаем право и лево

Право и лево легко спутать, особенно когда мы спешим или глубоко задумались

Psychologies
Открыть в приложении