«На музыке: Наука о человеческой одержимости звуком»
Музыка доставляет нам удовольствие, помогает сфокусироваться, может волновать или наоборот, успокаивать. Причем ее действие универсально, независимо от культуры, в которой мы были воспитаны. В книге «На музыке: Наука о человеческой одержимости звуком» (издательство «Альпина нон-фикшн»), переведенной на русский язык Анной Поповой, нейробиолог и музыкант Дэниел Левитин рассказывает, что такое музыка с точки зрения науки, как она взаимодействует с человеческим мозгом и почему оказывается для нас так важна. N + 1 предлагает своим читателям ознакомиться с фрагментом, посвященным тому, как наш мозг воспринимает звуки и чем автомобильный гудок отличается от классической музыки.
Сложность структуры мозга трудно оценить, потому что цифры для ее выражения выходят за пределы нашего понимания (если только вы не занимаетесь космологией). Среднестатистический мозг состоит из 100 млрд нейронов. Если предположить, что каждый нейрон — это доллар и вы на углу улицы раздаете прохожим купюры настолько быстро, насколько возможно, скажем по доллару в секунду, то, занимаясь этим 24 часа в сутки 365 дней в году без единого перерыва с первого дня нашей эры, вы бы к настоящему моменту избавились всего от 2/3 своих денег. Даже если бы вы раздавали по сотне долларов в секунду, у вас ушло бы 32 года. Это если говорить только о числе нейронов — а ведь настоящая сила и сложность мозга (и разума) заключается в их связях.
Каждый нейрон связан с другими нейронами — обычно у него от 1000 до 10 000 связей. Всего четыре нейрона могут соединяться 63 способами или вовсе не соединяться, что дает в общей сложности 64 комбинации. По мере увеличения числа нейронов количество возможных связей между ними растет экспоненциально; формула для расчета числа способов, которыми n нейронов могут соединяться друг с другом, такова: 2(n*(n–1)/2). Получаются такие цифры:
2 нейрона могут соединяться 2 способами;
3 нейрона могут соединяться 8 способами;
4 нейрона могут соединяться 64 способами;
5 нейронов могут соединяться 1024 способами;
6 нейронов могут соединяться 32 768 способами.
Число комбинаций возрастает настолько быстро, что мы вряд ли когда-нибудь изучим все варианты соединений в мозге и поймем их значение. Число комбинаций — и, следовательно, число направлений мысли и состояний мозга, которые могут быть у каждого из нас, — превышает количество частиц во всей известной нам Вселенной.
Стоит обратить внимание и на то, что все песни, которые мы когда-либо слышали, и все, которые когда-либо будут созданы, состоят всего из 12 музыкальных нот (если считать одну октаву). Каждая нота может перейти в другую ноту, в саму себя или в паузу, и это создает 12 вариантов перехода. А каждый из них дает еще столько же. Если учитывать ритм, то есть то, что каждая нота может быть любой длительности, то число комбинаций возрастает еще быстрее.
В основном вычислительная мощность мозга обусловлена как раз огромным количеством вариантов связей, а это возможно благодаря тому, что мозг выполняет вычисления параллельно, а не последовательно. Последовательный процессор подобен сборочному конвейеру, который обрабатывает каждую частицу информации по мере ее поступления на ленту, выполняет с этой частицей какую-то операцию, а затем отправляет ее дальше для выполнения следующей операции. Компьютеры работают именно так. Попросите компьютер загрузить песню с вебсайта, рассказать вам о погоде в городе Бойсе и сохранить файл, над которым вы работаете, и он будет выполнять эти задачи по очереди*. Он работает настолько быстро, что может сложиться впечатление, будто они все идут одновременно — параллельно, но это не так. А вот мозг может параллельно выполнять сразу несколько задач. Наша слуховая система обрабатывает звук таким же образом — ей не нужно ждать, пока определится его высота, чтобы распознать его источник. Сети нейронов, отвечающие за эти две операции, ищут ответы одновременно. Если одна сеть нейронов завершает свою операцию раньше, чем другая, она просто передает полученную информацию в связанные области мозга, и они могут сразу начать ее использовать. Если из другой сети приходит информация, поступившая позже и влияющая на интерпретацию звуков, которые мы слышим, мозг может «передумать» и обновить ход мыслей. Он вообще постоянно меняет мнение, особенно когда речь идет о восприятии зрительных и слуховых стимулов, — сотни раз в секунду, а мы этого даже не сознаем.
*Это верно в отношении работы одноядерного процессора: задачи выполняются последовательно. Однако процессор способен обмениваться информацией с оперативной памятью на скорости в тысячи мегагерц и складывать туда недоделанные задачи, а предел задержек для человеческого восприятия — десятки миллисекунд или в лучшем случае единицы. Из-за этой огромной разницы в скорости «мышления» компьютер кажется нам многозадачным устройством. Мозг же по-настоящему многозадачен — он медленный, зато решает массу проблем в один и тот же момент. —