Зачем и как люди ищут девятую планету Солнечной системы?

Популярная механикаНаука

Девятая планета: существует ли она на самом деле?

Дмитрий Вибе

В январе 2016 года мир облетела новость об открытии девятой планеты Солнечной системы. Майкл Браун и Константин Батыгин нашли признаки ее существования в движении малых тел на окраине нашего космического дома. Однако практика показывает, что от первых подозрений до настоящего открытия иногда проходят десятилетия. Очень часто поиск гипотетических планет и вовсе заканчивается тупиком.

Людям почему-то очень хочется, чтобы в Солнечной системе была еще одна планета. Для астрономов поиски планет всегда были еще и вопросом престижа, ибо ученый, открывший новую планету, гарантированно вписывает свое имя в историю науки, причем большими золотыми буквами. В истории астрономии нередки случаи, когда это желание перерастало в уверенность, порой безосновательную, но настолько сильную, что гипотетическим планетам заранее придумывали имена и организовывали специальные кампании по их поиску.

10e2db3d41e346444d141df3bdb4cac3.jpg
Эксцентриситет характеризует форму орбиты: чем он больше, тем эллипс более вытянут (0 — окружность, 1 — парабола). Большая полуось — это половина максимального поперечника эллипса. Наклонение — угол между плоскостью орбиты тела и плоскостью эклиптики. Если он более 90 градусов, тело движется «навстречу» движению планет. Восходящий узел — это точка перехода тела по орбите через плоскость эклиптики из «нижней» половины Солнечной системы в «верхнюю» (в которую обращен Северный полюс Земли). Поворот плоскости орбиты относительно звезд описывается долготой восходящего узла — углом между направлениями на восходящий узел и на точку весеннего равноденствия (сейчас она находится в созвездии Рыб). Ориентация орбитального эллипса в плоскости орбиты тела характеризуется аргументом перигелия — углом между направлениями на восходящий узел и на перигелий. Истинная аномалия указывает положение тела на орбите, это угол между направлением на перигелий и на тело.

Уран и Нептун

Первым стимулом для поисков новой планеты в Солнечной системе стало открытие Урана. В марте 1781 года английский астроном Вильям Гершель заметил в созвездии Тельца движущееся пятно, которое на поверку оказалось новым членом Солнечной системы. Уран стал первой планетой, открытой при помощи телескопа. Да и вообще просто открытой, ведь обо всех планетах, известных до Урана, человечество знало «всегда».

Принято писать, что следующую планету, Нептун, «обнаружили на кончике пера». Поводом для его поисков стали особенности в движении Урана, необъяснимые при помощи ньютоновского тяготения и требовавшие наличия внешнего возмущающего тела. Эти особенности, впервые отмеченные еще в 1783 году петербуржским ученым Андреем Лекселем, позволили французскому астроному Урбену Леверье (и с меньшей точностью англичанину Джону Адамсу) предсказать положение «возмутителя». Леверье послал письмо с координатами Иоганну Галле в Берлинскую обсерваторию, и тот в ночь с 23 на 24 сентября 1846 года, буквально через несколько часов после получения письма Леверье, обнаружил Нептун почти точно в предсказанном месте. Открытие Нептуна считается классической демонстрацией предсказательной силы теории тяготения Ньютона и одним из ее «триумфов», хотя в этом триумфе есть и пара ложек дегтя. И Леверье, и Адамс оценивали большую полуось орбиты гипотетической планеты по правилу Тициуса-Боде, а реальный Нептун (как выяснилось после его открытия) в это правило не вписывается. В результате орбиты, вычисленные обоими учеными, сильно отличались от фактической орбиты Нептуна… за исключением той ее части, на которой Нептун находился в 40-е годы XIX столетия. Поэтому в этой истории присутствует элемент везения.

В том же XIX веке развернулись поиски еще одной гипотетической планеты, Вулкана, которая должна была заполнить собой пробел между Меркурием и Солнцем. С 1826 по 1843 год ее искал немецкий астроном Генрих Швабе (планету он так и не нашел, но зато первым обнаружил цикличность солнечной активности). В 1860-е годы в движении Меркурия нашлись несоответствия с ньютоновской теорией тяготения, и интерес к поискам Вулкана возродился, но в начале XX века снова угас, когда эти нестыковки удалось объяснить в рамках общей теории относительности.

43a2ce37c4eb4e55d826c9284cef7915.jpg
Чтобы планета № 9 могла выровнять орбиты ТНО, ее собственная орбита должна быть вытянута в противоположную сторону. Голубым цветом показаны орбиты объектов пояса Койпера, перпендикулярные плоскости эклиптики, которые случайно также получили объяснение в рамках модели Брауна–Батыгина.

Плутон

Открытие Нептуна стимулировало новые поиски: казалось, что в движении Урана и Нептуна остались необъясненные невязки. Но поиски не принесли результата. Точнее, транснептуновую планету, как и Вулкан, обнаруживали много раз, но она всегда оказывалась либо звездой с неверно определенными координатами, либо вообще призраком. В 1905—1906 годах к проблеме подключился американский астроном Персиваль Ловелл, который провел теоретические расчеты и организовал наблюдения в обсерватории во Флагстаффе (Аризона). Анализируя расхождения между реальными и вычисленными положениями Урана, он получил вытянутую орбиту со значительным эксцентриситетом (0,2), большой полуосью около 45 а.е. и наклонением к плоскости эклиптики около 10 градусов. Анализ движения Урана позволил Ловеллу предсказать текущее положение планеты и ее массу, которую он оценил примерно в пять масс Земли.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Открыть в приложении