Алюминиевая броня: самая лёгкая защита для танка
Мы говорим «броня» – и по привычке подразумеваем сталь, хотя в современной военной технике широко используются и легкие металлы – титан, магний и, конечно, алюминий. Алюминиевые сплавы давно и прочно обосновались на бронемашинах: несмотря на мягкость самого металла в чистом виде, его сплавы достаточно прочны и во многих случаях оказываются предпочтительнее сталей.
В высоком и полупустом ангаре выстрел звучит особенно громко, так что нам посоветовали заранее закрыть уши и приготовиться. Грохот действительно впечатляет, отдаваясь в груди. Стреляют здесь постоянно: Российский центр испытаний (РЦИ) при московском НИИ стали не только отрабатывает новые экспериментальные сплавы, но и контролирует качество заводской продукции, поступающей со всей страны и из-за рубежа, производит сертификацию гражданских товаров. Увесистый маятник с креплением для холодного оружия позволяет оценить защитные свойства бронежилета при точно измеренном, стандартизированном ударе. В окруженном тяжелыми стенами тире производится обстрел касок, бронежилетов и бронестекол.
Но самое главное – броневые панели – испытываются в отдельном большом зале. Тяжелую пластину устанавливают под нужным углом в камере, закрывая толстой дверью с узким окошком для пролета пули. Под ногами хрустит: от удара о мишень пули разлетаются на мелкие куски, выбивая из нее металлические опилки и пыль. Смонтированные на специальных стойках стволы мощных винтовок и даже легких пушек работают почти без перерыва. Красным мерцают цифры регистратора полета пули, фотоэлементы которого фиксируют скорость с точностью до 0,1%. «Кстати, дедовские приемы работают ничуть не хуже, – рассказали нам испытатели, показывая картонный лист, обмотанный тонкой проволокой. – Ставим два таких на пути, пуля прорывает одну цепь, затем другую. Получается дешево и сердито».
Когда дым рассеялся, а вентилятор очистил воздух от мелкой металлической пыли, мы смогли заглянуть в камеру с мишенью и осмотреть бронепластину. Поражение оценивается по состоянию ее обратной стороны – от полностью ровной поверхности (один балл) через мелкие разрывы и до сквозной пробоины с полноценным расколом (10 баллов). «Самый простой способ заметить прорывы и микротрещины – полить отверстие керосином, – объясняют инженеры. – Он легкий, быстро просачивается, и его можно просто унюхать». Нюхать нам ничего не пришлось: на ощупь с обратной стороны бронепластины лишь едва наметилось вздутие. По стандарту шкалы поражений это всего два балла: крупнокалиберная снайперская винтовка не справилась с панелью из алюминиевого сплава.
Алюминий
Дебют алюминиевой брони можно датировать серединой XIX века, когда император Наполеон III счел металл подходящим для изготовления легких доспехов. Несовершенная технология промышленного получения алюминия, незадолго до этого разработанная химиком Анри Сент-Клером Девилем, позволяла получать еще не слишком чистый, но уже чересчур мягкий металл, что показали первые же неудачные попытки французов использовать такие доспехи. Приемлемая технология производства алюминия появилась позднее, в конце 1880-х. Эффективный и простой электролиз глинозема обрушил стоимость металла и стимулировал активные эксперименты с его сплавами, раскрыв весь их огромный потенциал.
В самом деле, сплавы алюминия могут становиться в 15–20 раз прочнее чистого металла. Для сравнения: прочность стали не более чем вдесятеро превышает прочность железа. Разумеется, сталь все равно останется тверже, так что алюминиевые защитные элементы той же массы будут заметно толще стальных. Однако это даже к лучшему, поскольку позволяет избавиться от дополнительных элементов, обеспечивающих жесткость всей конструкции, упростить ее и дополнительно облегчить. А уменьшение массы – это и большая проходимость, и увеличенная дистанция хода, и – как мы скоро узнаем – повышенная десантируемость.