Финслерова геометрия как теория четырехмерности мира
(о геометрии Вселенной, сверхсветовых скоростях, параллельных мирах, обратном ходе времени и... египетских пирамидах)
Четырехмерное пространство существует, и внутри него вращаются наша Вселенная и множество параллельных миров! Такое открытие было сделано совсем недавно на основе астрономических наблюдений и характера распространения световых волн. В исследовании были задействованы самые передовые ЭВМ.
Теория многомерных пространств
Исследования многомерных пространств начались еще два столетия назад в области неевклидовой геометрии. Основы этой науки были заложены выдающимся немецким математиком Бернхардом Риманом. Но в настоящее время теория многомерных пространств получила экспериментальное подтверждение. В эксперименте были использованы световой конус и четыре метрические формы пространства.
Световой конус – это область, в которой распространяются световые лучи, проходящие через одну точку (наблюдателя). Световой конус заключает в своем временном пространстве конус прошлого и конус будущего.
По отклонению луча света удается обнаружить самые разнообразные гравитационные аномалии в космическом пространстве. А учитывая, что свет движется с самой наибольшей физически возможной скоростью (299792458 м/с для вакуума), без сомнения, это делает световые волны самым удобным инструментом для изучения многих физических и астрономических явлений. И особо важную роль световые волны сыграли в поиске точек искривления пространства в масштабе нашей видимой Вселенной. А такая фундаментальная сила, как гравитация, напрямую связана с геометрией нашей Вселенной, и именно по ней стало возможно определить существование параллельных миров.
В ходе эксперимента по поиску аномалий в нашей Вселенной необходимо было показать, что четырехмерное пространство устроено по метрике 4-й степени. Для этого нужно понимать, что представляют собой метрики 1-й, 2-й, 3-й и 4-й степени:
- 1-я метрика Галилея (классическая физика Ньютона);
- 2-я метрика пространства Минковского (ОТО Эйнштейна);
- 3-я некая пока еще не исследованная метрика;
- 4-я метрика Бервальда–Моора (финслерово пространство).
Доказательством того, что наш мир устроен именно по геометрии финслерова пространства, является наличие выделенных направлений, то есть анизотропия пространства. Свойства пространства выделенного направления отличаются от свойств этого же пространства по другим направлениям. Мы же в обычной жизни сталкиваемся с тем, что ни одно из направлений ничем не лучше другого и наше пространство изотропно. Из того же исходит и теория относительности, однако пространство Минковского, с которым работает эта теория, имеет одно выделенное направление – время. Изотропным оказывается лишь подпространство на размерность ниже. Наблюдаемая нами изотропность связана с тем, что мы погружены в наше пространство и не видим всей картины целиком.
Попробуем разобраться
Для того чтобы было проще понять, как устроен наш мир, используем прием, широко применяемый в Теории относительности. Для этого рассмотрим не четырехмерное пространство-время, а трехмерное.
Для метрики второй степени (метрика пространства Минковского) мы видим два световых конуса – это наша трехмерная Вселенная. Линия, совпадающая с вертикальной осью обоих конусов, означает, что объект неподвижен. Любая другая прямая, лежащая в пределах этих конусов, будет восприниматься неподвижным наблюдателем как объект, имеющий скорость. Линия на границе конусов означает, что объект двигается со скоростью света. Согласно постулатам теории относительности, движение тел со скоростью больше световой невозможно. В пространстве Минковского движение со сверхсветовой скоростью выходит за пределы световых конусов.
Для метрики четвертой степени (финслерово пространство) мы видим четыре световых конуса. Это результат пространственной симметрии.
Два вертикальных конуса – это наша Вселенная, а перпендикулярные ей конусы – это параллельная вселенная, аналогичная нашей. Согласно метрике финслерова пространства, световые конусы нашей и параллельной вселенных имеют точки соприкосновения. В этих точках объекты каждой из вселенных движутся со скоростью света. В случае же если в нашем и параллельном мире взять два неподвижных объекта, то их скорость относительно друг друга будет составлять 90 000 000 000 км/с. Это скорость света в квадрате, полученная автором теории относительности Альбертом Эйнштейном. И это та скорость, при которой любой объект любой массы полностью превращается в энергию. Скорость света в квадрате является наибольшей возможной скоростью, если рассматривать движение объектов между параллельными пространствами. Иными словами, чтобы попасть в параллельное пространство, скорость объекта должна лежать между скоростью света (299 792 км/с) и скоростью света в квадрате (90 000 000 000 км/с).
Кроме того, метрика 4-й степени дает уже не конусы, а пирамиды треугольной формы.