Существует ли сингулярность: от теории к фактам
Валерий Витальевич Васильев — российский ученый, академик РАН и специалист в области механики. На протяжении многих лет он изучает сингулярность решений прикладных задач,доказывая, что этот феномен — ни что иное как результат некорректности математической модели изучаемого явления или процесса. Попробуем разобраться в этом — существует ли сингулярность в реальности или она является формальным математическим результатом,не имеющим физического содержания.
Сразу отметим, что этот материал рассказывает об альтернативной концепции сингулярности. И её автор понимает, что она идёт вразрез с установившимися в науке концепциями. Соглашаться с ней или не соглашаться — личное дело каждого, но если вы не просто несогласны, но ещё и готовы своё несогласие аргументировать, мы приглашаем вас к дискуссии. А теперь обо всём по порядку.
Одна из наиболее распространенных сингулярностей связана с Черными дырами — загадочными областями пространства-времени, гравитационные аномалии которых привлекают к себе внимание ученых по всему миру. Теоретическая возможность существования подобных астрономических объектов, основанная на сингулярном решении сферически симметричной задачи общей теории относительности, обсуждается еще с начала прошлого века. Однако в связи с концепцией, согласно которой Черные дыры являются реально существующими объектами, сингулярность решения, из которого они следуют, связана с гораздо более общей проблемой — проблемой реальности сингулярных решений прикладных задач. Решению этой проблемы посвятил свою работу Валерий Витальевич Васильев — советский и российский ученый, академик РАН, специалист в области строительной механики, теории упругости и проектирования конструкций из композитных материалов.
Сингулярность: что это такое
Валерий Витальевич Васильев – российский ученый, академик РАН и специалист в области механики. На протяжении многих лет он изучает сингулярность решений прикладных задач, доказывая, что этот феномен – ни что иное как результат некорректности математической модели изучаемого явления или процесса. Попробуем разобраться в этом – существует ли сингулярность в реальности или она является формальным математическим результатом, не имеющим физического содержания.
Как известно, исследование реальных процессов и явлений всегда осуществляется в рамках их физических моделей, описываемых некоторыми уравнениями, образующими математическую модель. Эти модели соответствуют реальности лишь приближенно, поскольку исследователи традиционно не учитывают множество второстепенных факторов, значительно усложняющих анализ. Если при решении уравнений, описывающих математическую модель, не привлекается дополнительных упрощений, то получаемое решение считается точным. Однако это справедливо только в отношении модели и только в рамках традиционного математического анализа, допускающего возможность существования бесконечно малых и бесконечно больших величин. Последние и появляются в сингулярных решениях в так называемых точках сингулярности.