Большие проблемы Вселенной
Один из самых известных в мире астрофизиков Геннадий Бисноватый-Коган рассказал нам о звездной эволюции, инфляции и симметрии, об экзопланетах и других явлениях и проблемах Вселенной, которая все еще таит множество загадок. Но ученые их постепенно разгадывают

Когда и как возникла Вселенная? Или она существовала вечно? Этот вопрос испокон веков беспокоил человечество. Но ответ на него до относительно недавнего времени пытались найти только религиозные пророки и философы, и лишь в ХХ веке, после создания общей теории относительности и квантовой теории, это стало предметом науки — космологии. Все мы наслышаны о теории Большого взрыва, есть даже известный американский сериал с таким названием, но мало кто представляет себе, что стоит за этими словами и куда и как развивается эта теория.
Чтобы обсудить эти вопросы, мы встретились с одним из самых известных в мире астрофизиков, значительная часть научных работ которого посвящена эволюции звезд, доктором физико-математических наук, профессором, главным научным сотрудником отдела прикладной и теоретической астрономии и радиоинтерферометрии Института космических исследований (ИКИ) РАН Геннадием Бисноватым-Коганом.
— Значительная часть ваших работ посвящена звездной эволюции. В чем суть этой эволюции и в чем суть ваших работ?
— Звездная эволюция — это очень большой раздел астрофизики. Когда-то считалось, что почти все вещество во Вселенной состоит из звезд. Сейчас появилась еще темная материя, межгалактический газ, так что на долю звезд остается не более двух-трех процентов плотности Вселенной. Тем не менее все, что мы видим простым глазом из космоса, — это все от звезд. Долгое время ученые искали ответ на основной вопрос: откуда они черпают энергию? Ответ на него был получен в конце 1930-х годов, когда открыли термоядерную реакцию. Оказалось, что это результат термоядерной реакции, протекающей на звездах. Поэтому эволюция звезд — это процесс выгорания со временем вещества, из которого состоят звезды, — выгорание водорода в центральных областях звезды. Звезды очень отличаются друг от друга. Но то, что у них после рождения горит водород, — это универсально. А вот то, что получается потом, сильно различается. Вначале образуется гелий, а потом происходят всякие расширения и возникают красные гиганты, голубые гиганты*.
* Красный гигант — это конечный этап эволюции звезды. Звезда становится красным гигантом, когда в ее центре весь водород превращается в гелий, а термоядерное горение водорода продолжается на периферии гелиевого ядра. Голубые гиганты — это молодые очень горячие и яркие звезды с температурой поверхности 20 000–50 000 °C.
В общем, это очень разветвленная область науки, основанная на огромном количестве наблюдений. Но то, чем я занимался, — это последняя стадия эволюции звезд. Это то, во что превращается звезда после того, как у нее вообще кончается ядерное горючее. Оно может закончиться по двум причинам. Во-первых, потому что она приходит в такое состояние, когда температура уже не растет и горение прекращается. В результате получается так называемый белый карлик. Это происходит при эволюции звезд небольшой массы, меньше восьми масс Солнца, А если горение идет дальше, то в происходящих реакциях синтезируются различные элементы, вплоть до железа. После этого звезда теряет устойчивость, поскольку тепло больше не выделяется, но продолжается потеря энергии на излучение и замедляется рост давления при сжатии.
Начинается гравитационный коллапс и образование нейтронных звезд, которое может сопровождаться вспышкой сверхновой звезды. Я занимался примерно этим кругом вопросов, в том числе механизмами взрыва сверхновых. Вместе с Яковом Марковичем Кажданом в 1966 году мы приближенно рассчитали свойства предсверхновых звезд, которые теряют устойчивость из-за диссоциации железа при массах, не превышающих примерно 100 солнечных. Для звезд большей массы устойчивость теряется из-за рождения электронно-позитронных пар, а у (гипотетических) сверхмассивных звезд с массами, превышающими несколько тысяч солнечных, причины потери устойчивости и перехода к коллапсу определяют эффекты общей теории относительности.
После открытия пульсаров** в 1967 году стало ясно, что нейтронные звезды быстро вращаются и обладают огромным магнитным полем — примерно 1012 Гаусс. И именно тогда я предложил в качестве модели взрыва сверхновой магниторотационный механизм, когда большая вращательная энергия образовавшейся при коллапсе нейтронной звезды с помощью магнитного поля трансформируется в энергию взрыва. Механизм магниторотационного взрыва состоит в следующем: неоднородный коллапс железного ядра приводит к дифференциальному вращению вещества образующейся нейтронной звезды. Радиальная компонента полоидального магнитного поля при этом закручивается с образованием тороидальной компоненты, и напряженность магнитного поля при этом быстро растет.
** Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звезды с магнитным полем, которое наклонено к оси вращения, что вызывает модуляцию приходящего на Землю излучения.
Рост магнитного давления приводит к возмущениям и отклонению от равновесия. Когда магнитное давление приблизится к давлению вещества, волна возмущения превращается в ударную при движении по спадающей наружу плотности. При выходе на поверхность звезды ее температура сильно возрастает, что объясняет наблюдаемую вспышку. При этом вещество ударной волны разлетается, и в итоге образуется остаток сверхновой с нейтронной звездой в центре. Наиболее известной из таких остатков является Крабовидная туманность с молодым пульсаром в центре, вращающимся с периодом 33 миллисекунды и продолжающим подпитывать энергией саму туманность благодаря магнитной связи. Взрыв сверхновой, в результате которого образовалась Крабовидная туманность, произошел около тысячи лет назад и описан в китайских хрониках.