Чем занимается астрохимия, когда и как она выделилась в самостоятельную науку

Знание – силаНаука

Зачем нужна астрохимия?

О том, чем занимается астрохимия, когда и как она выделилась в самостоятельную науку, мы говорим с Валерием Ивановичем Шематовичем, заведующим отделом исследований Солнечной системы Института астрономии РАН, доктором физико-математических наук.

«Знание – сила»: Валерий Иванович, долгое время была наука астрономия, в прошлом веке к ней добавилась в качестве самостоятельного направления исследований астрофизика, то есть физика, связанная со звездами, межзвездной средой. Сейчас довольно часто упоминают астрохимию и астробиологию. Если начать с астрохимии, это уже самостоятельное направление научных исследований, вполне самодостаточное?

Валерий Шематович: В принципе да. С этим можно согласиться. Международный астрономический союз давно уже проводит симпозиумы по астрохимии. Симпозиум МАС № 178 «Молекулы в астрофизике: пробы и процессы», на котором я присутствовал в 1996‑м, проходил в Лейдене, и это был уже третий симпозиум МАС по астрохимии. А в 2023 году был проведен восьмой симпозиум МАС по астрохимии.

Что такое астрохимия с формальной точки зрения? Это изучение химических процессов в астрофизических средах.

«ЗС»: Это и звезды, и межзвездные облака?

В. Ш.: Тут требуется уточнение. До астрохимии уже были космохимия и молекулярная астрофизика. Три самостоятельных направления исследований. Они во многом пересекаются. И поэтому сказать, что вот эта область относится только к астрохимии, сложно. Классические астрофизики частенько говорят: ну что вы нам опять про астрохимию? Есть молекулярная астрофизика, то есть астрофизика, которая описывает процессы образования молекул. А молекулы интересны тем, что они светят на низких уровнях энергии. И, в общем, на низких частотах, поставляя таким образом информацию об условиях в холодных областях межзвездной среды.

«ЗС»: Не только светят, еще линии поглощения могут давать, если на просвет.

В. Ш.: И светят, и линии поглощения дают. Поэтому от них можно получить информацию о холодных областях и нашей галактики, и Вселенной, по большому счету. Потому что, когда мы смотрим излучение атомов, то это преимущественно излучение с уровней с высокой энергией возбуждения, это либо оптический диапазон, либо ультрафиолет. А молекулы интересны тем, что они приносят информацию о температуре и скорости в межзвездных облаках. Для физиков самое интересное прежде всего не концентрация, а именно температура и скорость. Еще в астрофизике важную роль играет спектроскопия: мы видим те излучения, которые приходят к нам и наблюдаются с помощью телескопов. По ним можно судить о том, какой химический состав у астрофизического объекта, который мы изучаем. Что касается космохимии, ею у нас занимается Институт геохимии и аналитической химии имени В. И. Вернадского РАН, который является одним из законодателей моды в космохимии. Это изучение химического состава различных космических тел, прежде всего метеоритов, которые упали на Землю. Собственно, этим и занимаются космохимики. Они в лаборатории изучают состав, т. к. у них уже есть объект, они держат его в руках.

«ЗС»: Получив экспериментальные данные, они пытаются объяснить, как возник такой состав?

В. Ш.: Да. С накоплением информации понемногу стало ясно, насколько сложен с химической точки зрения – есть такой термин «химическое разнообразие», – насколько сложен тот внешний мир, ближний и дальний космос, который мы наблюдаем. Говоря о ближнем космосе, я имею в виду Солнечную систему. Та же астрохимия для Солнечной системы «работает», и космохимия, и молекулярная астрофизика – тоже.

«ЗС»: Они пересекаются, эти три научных направления, но тем не менее они все-таки более-менее самостоятельны?

В. Ш.: У них есть свои критические точки. Скажем, то, что нам не могут дать космохимия либо молекулярная астрофизика, дает астрохимия.

«ЗС»: Как возникает химическое разнообразие космоса? Благодаря химическим процессам?

В. Ш.: Вопрос, какие реакции, какие химические процессы? Мы все помним, что раньше предполагалось, будто космос холодный и пустой, потому что есть очень жесткие излучения, которые не позволяют существовать никакому химическому разнообразию. Атомы есть, галактические космические лучи, и не более того. Где-то с 30‑х годов прошлого столетия, когда методы радионаблюдений стали формироваться, а спектроскопия работала в основном на атомных спектрах, появились первые данные о молекулах. Нашли CH – метилидин, самые простые двухатомные молекулы. Позже мы узнали, что весь космос, все окружающее нас вещество, – это преимущественно водород, либо атомарный, либо молекулярный. Как только мы имеем дело с холодной средой, значит, молекулярный. Это гомо-ядерная молекула, и она не светит. Кроме линии 21 сантиметр. Поэтому нам сложно наблюдать и такие молекулы как Н2, О2, N2. Нам интересны полярные молекулы, когда есть некое направление, вращение вокруг которого сопровождается излучением фотонов с очень низкими энергиями. Самый классический пример – СО, угарный газ, являющийся довольно обильной молекулой в межзвездной среде, у него самый низкий вращательный переход соответствует температуре всего лишь в несколько градусов Кельвина. И это нам позволяет видеть очень холодные области светимости. К счастью, эта молекула оказалась довольно обильной.

«ЗС»: Но это в радиодиапазоне?

В. Ш.: Да. При таких температурах может быть только радиодиапазон. Продолжим разговор об астрохимии. Стоит упомянуть двух американских ученых, один из них – химик по образованию, Эрик Хербст (род. 1946), а второй – астрофизик Александр Далгарно (1928—2015). Мне посчастливилось встречаться на симпозиумах по астрохимии с обоими. Кстати, Уильям Клемперер, руководитель Эрика Хербста, тоже астрофизик. Ими были опубликованы в 1973 году статьи, где впервые была предложена химическая модель молекулярных облаков, модель химического разнообразия тех темных областей межзвездной материи, где возникают звезды. Они создали первые химические модели, которые были относительно простыми. Важно было поймать энергетический «драйвер», если можно так выразиться. Потому что химия может протекать, только когда у вас есть приток энергии. Если у вас нет притока энергии, то химия поработает и в какое-то равновесное или неравновесное состояние придет. Оказалось, что в основном молекулы наблюдали в холодных областях, хотя и в звездах видят простейшие молекулы, но более-менее сложные молекулы видят в холодных, так называемых темных молекулярных облаках. А эти объекты очень интересны, потому что там рождаются звезды, там возникают протопланетные диски и планетные системы. Современная астрохимия как раз начинает свою работу в этой области. Хербст и Далгарно предложили первые химические модели для холодных и темных молекулярных облаков в 1973‑м, а за последующие 20 лет успел появиться довольно большой объем информации о химическом разнообразии межзвездных облаков. Исследованиями занялось немало людей, пришедших из химии, которые знают, как протекают химические процессы. Среда очень холодная, энергии очень мало. В основном энергия приходила от галактических космических лучей, либо там, где молодые звезды рождались, имелось ультрафиолетовое излучение. Но ультрафиолетовое излучение опасно тем, что оно и вполне эффективно разрушает молекулы. По мере того, как совершенствовались радио- и ИК-телескопы, как их удавалось вынести в открытый космос, чтобы избежать влияния нашей земной атмосферы, получались все более интересные данные. Потому что земная атмосфера, к сожалению, поглощает излучение самой интересной молекулы, а именно, молекулы воды. Есть целое направление в астрохимии, которое изучает образование молекул воды в разных объектах. По понятным причинам это уже важно для астробиологии – зачем молекулы воды как таковые? Но об этом позже.

И вот за 20 лет произошло становление астрохимии. Пришли специалисты по наблюдениям, радионаблюдениям. Для качественных радионаблюдений необходим некоторый уровень совершенства техники – детекторов, усилителей и так далее. То есть своя достаточно продвинутая наука. Пришли химики, которые знают, как протекают реакции, как это считать вообще, какие для расчетов молекулярные данные нужны. И пришли математики, которые знают, как с такими системами работать. Химические системы, они всем хороши, но они с точки зрения математики очень жесткие, нелинейные. То есть вы красивую химическую схему нарисовали, как все должно работать, но появляется маленькая примесь, и ваша химия начинает давать совершенно другие результаты, становится неустойчивой и так далее. Поэтому нужно математически правильно все решать. (Я вот как раз представитель математики, который был вовлечен в астрохимию). Ну и плюс ко всему астрофизики, естественно, которые должны определить, в каких объектах какие характерные температуры, какие плотности.

Основное отличие астрохимии от лабораторной химии в том, что в астрохимии химические процессы протекают на очень больших масштабах времени. Так, например, в молекулярном облаке образуются так называемые дозвездные ядра, в которых должны рождаться звезды. Известно из наблюдений, что в этих дозвездных ядрах температура около и ниже 10 Кельвинов, плотность 10 тысяч частичек в кубическом сантиметре. У нас не всегда получается на лабораторных установках такого вакуума достичь. А уж для температуры в 10 Кельвинов нужно столько жидкого гелия извести, чтобы охладить систему… То есть в лаборатории воспроизвести такие условия очень непросто. Есть только несколько лабораторных установок в мире, которые позволяют воспроизвести такие условия, но даже не по плотности, а чтобы померить хотя бы скорости химических реакций при таких низких температурах. Собственно, поэтому часто используются теоретические оценки параметров химических реакций при 10 Кельвинах, но всегда требуется подтверждение в лаборатории, что и является одной из актуальных задач уже лабораторной астрохимии. Вот для скоростей химических реакций при 300 Кельвинов – комнатной температуре – есть большая база данных.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Цифровая паутина «Черного квадрата» Цифровая паутина «Черного квадрата»

Как манифест Малевича переосмысливают современные художники

Вокруг света
Что такое мукбанг и почему людям нравится смотреть, как едят другие Что такое мукбанг и почему людям нравится смотреть, как едят другие

Почему одним людям мукбанг нравится, а других раздражает?

Psychologies
Элементарно, Ватсон Элементарно, Ватсон

Портрет необъятной Викторианской эпохи в пяти предметах

Вокруг света
Вторая планета от Солнца Вторая планета от Солнца

Верфь Heesen в июле объявила о продаже 55‑метровой яхты своему давнему клиенту

Y Magazine
Природный «паспортный контроль»: что такое линия Уоллеса и почему птицы и животные никогда ее не пересекают Природный «паспортный контроль»: что такое линия Уоллеса и почему птицы и животные никогда ее не пересекают

Линия Уоллеса: что это за явление, как ученые его обнаружили и объяснили

ТехИнсайдер
Артиллерия в новом веке Артиллерия в новом веке

Основные направления развития рынка артиллерийского вооружения

Обозрение армии и флота
Бурлацкий стан Бурлацкий стан

Чем знаменито село Ширяево в Самарской области?

Отдых в России
Как выявить рак на ранней стадии: инструкция от врача-онколога Как выявить рак на ранней стадии: инструкция от врача-онколога

Шаги для минимизации риска возникновения и прогрессирования рака

Psychologies
Как заселяли Америку Как заселяли Америку

Когда именно и как шло расселение человека на американском континенте?

Наука и техника
Витебская Джоконда: как художница Вера Ермолаева превращала детские книги в авангард Витебская Джоконда: как художница Вера Ермолаева превращала детские книги в авангард

Как иллюстрации к детским стихам могут быть объектом авангардного эксперимента

Forbes
Новая жизнь с понедельника: почему в психологии не бывает быстрых результатов Новая жизнь с понедельника: почему в психологии не бывает быстрых результатов

Чем опасны мифы о мгновенных изменениях, как на деле выглядит развитие личности?

Forbes
Катерина Мурашова: почему подростки ищут альтернативные реальности Катерина Мурашова: почему подростки ищут альтернативные реальности

Что стоит за увлечением играми, фэнтези и животными альтер-эго?

СНОБ
Портрет неизвестного Портрет неизвестного

Кто решает, какое произведение искусства называть шедевром?

СНОБ
По кругу По кругу

На краю деревни, среди леса стоит дом, в который хочется привести каждого

Seasons of life
Ненужный кубок: почему ФИФА не может выгодно продать права на клубный чемпионат мира Ненужный кубок: почему ФИФА не может выгодно продать права на клубный чемпионат мира

ФИФА так и не удалось заключить выгодный контракт на клубный чемпионат мира

Forbes
Александр Лазарев: «Мастер и Маргарита» — это очень личное. Рукописи не горят...» Александр Лазарев: «Мастер и Маргарита» — это очень личное. Рукописи не горят...»

«В Театре Маяковского я родился, воспитывался, начал выходить на сцену»

Караван историй
«Комбинация»: как женская группа из Саратова покорила Советский Союз «Комбинация»: как женская группа из Саратова покорила Советский Союз

Как девчонки в неоновых лосинах и с начесами на головах покорили СССР?

Forbes
Синдром навязчивых грез: что это такое, симптомы расстройства, как избавиться Синдром навязчивых грез: что это такое, симптомы расстройства, как избавиться

Когда воображение уводит нас слишком далеко и как понять, что мы уже «не норм»?

Psychologies
Две жизни Хеди Ламарр Две жизни Хеди Ламарр

Скандальная кинозвезда или женщина, без которой не было бы Bluetooth и Wi-Fi

Вокруг света
Все в шоколаде? Все в шоколаде?

Когда невинная тяга к сладкому перерастет в нездоровую зависимость?

Psychologies
И не друг, и не враг, а так: как ИИ-разработчики развивают этические стандарты И не друг, и не враг, а так: как ИИ-разработчики развивают этические стандарты

Как разработчики ИИ реализуют известный принцип «не навреди»

Forbes
Мухи с котлетами: почему третий бак не решит проблему переработки пищевых отходов Мухи с котлетами: почему третий бак не решит проблему переработки пищевых отходов

Почему отдельный бак для пищевых отходов не избавит страну от выброшенной еды?

Forbes
Носить или не носить: правда ли, что ношение очков ослабляет зрение? Носить или не носить: правда ли, что ношение очков ослабляет зрение?

Ношение очков может еще больше ослабить зрение. Так ли это?

ТехИнсайдер
Чудеса системы Сатурна: жизнь на Титане? Чудеса системы Сатурна: жизнь на Титане?

Почему на Титане можно представить только неземлеподобную жизнь?

Наука и техника
«Вы просто не математики» «Вы просто не математики»

Ирина Манторова — о заработке на неэффективностях рынка и о психологии трейдеров

Монокль
«Культурные пожары» индейцев помогут спасти медведей и журавлей. Оказывается, в них есть смысл «Культурные пожары» индейцев помогут спасти медведей и журавлей. Оказывается, в них есть смысл

Экологи заново учатся древнему искусству выжигания земель

ТехИнсайдер
Защитит зубы и сердце! Вот чем сыр полезен для здоровья: интересные факты Защитит зубы и сердце! Вот чем сыр полезен для здоровья: интересные факты

Сыр: богат питательными веществами и полезен для сердца

ТехИнсайдер
Подменная машина Подменная машина

BAIC BJ40 выглядит так, будто приехал к нам из прошлого тысячелетия

Автопилот
Детки в клетке: что такое квадробинг и может ли он быть опасным для ребенка Детки в клетке: что такое квадробинг и может ли он быть опасным для ребенка

Может ли квадробинг нанести вред детской психике?

Forbes
Масличные пойдут в рост Масличные пойдут в рост

Урожай может сократиться, а цены на него — увеличиться

Агроинвестор
Открыть в приложении