Радужные плёнки: наблюдения и опыты
Вы, конечно, не раз обращали внимание на радужную окраску предметов, веществ, животных и растений. Примеров множество: переливающиеся цвета некоторых минералов, плёнок масла, «ржавой воды» на водоёмах, мыльных пузырей, трещин во льду, в стекле, цвета побежалости на нагретом металле. В животном мире радужно окрашены пятна и перья павлина, шея сизого голубя. Редким «металлическим отливом» могут похвастаться некоторые бабочки, жуки и мухи. Во всех этих случаях радужные цвета вызваны не красителями, а взаимодействием световых волн — интерференцией в тонких слоях прозрачных веществ, называемых тонкими плёнками. (Интерференция — это взаимное увеличение или уменьшение результирующей амплитуды волн при их наложении друг на друга.)
Попробуем понять, как возникают радужные переливы, и проделать несложные опыты с интерференцией в тонких плёнках.
Современное представление о механизме интерференции в тонкой прозрачной плёнке таково. Когда луч света падает на неё, он делится на две части: одна отражается от внешней поверхности плёнки, другая проникает сквозь её толщу, а затем частично отражается от нижней внутренней поверхности и возвращается обратно. В результате получаются два отражённых от плёнки луча света, накладывающиеся друг на друга. Поскольку они происходят из единого источника, то колебания световых волн в них согласованы. Такие волны называют когерентными. Только в этом случае возможно образование устойчивой интерференционной картины. Второй луч света проходит толщину плёнки дважды и потому «запаздывает» относительно первого луча. Величина запаздывания зависит от толщины плёнки и направления, в котором свет её проходит (угла падения света на плёнку). Когда оба луча встречаются и накладываются друг на друга, происходит взаимодействие световых волн, зависящее от запаздывания второго луча (см. рисунок). На рисунке вверху (a) обе волны точно совпадают в фазах — гребень одной волны совпадает с гребнем другой и впадина с впадиА ной (А). В итоге получившаяся в результате интерференции суммарная волна (RES) усиливается, то есть её амплитуда (размах) будет больше, чем у исходных волн. При равенстве амплитуд исходных волн суммарная волна будет иметь удвоенную амплитуду. Усиление волн произойдёт в случае, когда одна волна опередит другую на целое число длин волн.
На рисунке внизу (b) одна волна опережает другую на половину длины волны, или нечётное число полуволн, при этом фазы противоположны: накладываются гребень одной волны и впадина другой (А). В результате происходит ослабление, гашение волн. При равенстве амплитуд исходных волн гашение будет полным. Понятно, что мы рассмотрели крайние случаи. Возможно и частичное ослабление или частичное усиление волн, когда их фазы не совпадают точно или не прямо противоположны.
Таким образом, тонкая плёнка как бы рассортировывает и выделяет цвета из белого дневного света, усиливая и ослабляя определённые длины волн. Получившийся суммарный цвет отражённого луча света (окраска плёнки) зависит от толщины плёнки и угла падения света на неё. Наиболее насыщенные интерференционные цвета тонких плёнок возникают лишь при толщине, сравнимой с длинами волн видимого света (0,38—0,78 мкм). В толстых плёнках (более нескольких микрометров) их цветная окраска слабая. Для сравнения: толщина волоса около 70—80 мкм, размеры бактерий 0,5—2 мкм, то есть толщина радужных плёнок сопоставима с размером бактерий. Наиболее тонкие плёнки толщиной в несколько нанометров, что сравнимо с размером вирусов, кажутся просто серыми или чёрными. Так выглядят стенки мыльного пузыря незадолго до его разрыва — мыльная плёнка кажется совершенно чёрной.
Казалось бы, в очень тонкой плёнке волны должны усиливаться, однако в действительности происходит гашение волн. Луч отражается от границы «воздух — плёнка» таким образом, что разность пути луча скачком изменяется на половину длины волны. В чрезвычайно тонких плёнках интерференция волн будет определяться только этой разницей, что приводит, как мы уже знаем, к гашению волн.
Рассмотрим несколько примеров интерференции в тонких плёнках и проиллюстрируем некоторые из них наглядными опытами. Примем во внимание, что лучшее освещение при проведении всех опытов — рассеянный дневной свет из окна, а цвета интерференции хорошо видны на тёмном фоне.
Интерферирующие плёнки дают многие оксиды металлов. Поразительное зрелище представляют собой причудливые радужные кристаллы висмута. Их часто используют как сувениры и украшения. А швейцарский фотограф Фабиан Офнер создал из расплавленного висмута серию абстрактных картин. Сначала он плавил металл, затем выливал его на плоскую поверхность и разравнивал с помощью шпателя. На одну картину уходило около килограмма висмута, а на весь проект было израсходовано 90 кг.
Распространённый пример интерференции оксидных плёнок — так называемые цвета побежалости стали. Достаточно довольно слабого нагрева чистой поверхности стали, и на ней возникает меняющаяся последовательность цветов.
Проведём несложный опыт. Возьмём лезвие канцелярского ножа, протрём его поверхность салфеткой и, держа пинцетом или пассатижами, поместим ненадолго возле пламени газовой конфорки или спиртовки. В процессе нагрева мы увидим на лезвии меняющиеся цветные полосы, возникающие вследствие образования тончайшей невидимой плёнки оксида железа.
Цвета побежалости до распространения пирометров и других измерителей температуры широко использовали в качестве индикатора температуры нагрева железа и стали при термообработке. По ним также судили о температуре нагрева стальной стружки и, следовательно, резца при операциях точения, сверления, резания. Например, для углеродистой стали характерны следующие переходы цвета: соломенный (220°C), коричневый (240°C), пурпурный (260°C), синий (300°C), светло-серый (330—350°C). Для нержавеющих сталей: светло-соломенный (300°C), соломенный (400°C), красно-коричневый (500°C), фиолетово-синий (600°C), синий (700°C).