Открыт дважды очарованный тетракварк
За последние семь лет обнаружено около дюжины типов экзотических частиц, состоящих из четырёх кварков (тетракварки) и пяти кварков (пентакварки). Об открытии ещё одной новой элементарной частицы, экзотического тетракварка Tcc+ физики коллаборации LHCb в ЦЕРНе объявили на конференции Европейского физического общества в конце июля нынешнего года, после чего её необычные свойства начали активно обсуждаться в профессиональном сообществе. 3 сентября 2021 года исследователи представили уточнённые «паспортные данные» открытой частицы. Оказалось, живёт она беспрецедентно дольше своих собратьев — в 100—5000 раз — и имеет большой размер, примерно равный размеру ядра атома урана.
Своей стабильностью новый тетракварк обязан уникальному кварковому составу: два тяжёлых очарованных кварка и два лёгких антикварка. Это пока единственный известный науке дважды очарованный тетракварк, то есть содержащий сразу два очарованных кварка, но не имеющий в своём составе очарованных антикварков. Поэтому его характеристики, которые условно называют «паспортом частицы», представляют большой научный интерес. Напомним, кварки — это фундаментальные частицы, из которых состоят адроны, например протоны и нейтроны. Очарование (также чарм или шарм, по-английски charm, откуда стандартное обозначение С) — одно из свойств кварков, квантовое число. Большинство адронов состоит из двух или трёх кварков. Долгое время существование более тяжёлых частиц обнаружить не удавалось, хотя теория их предсказывала. Прорыв произошёл в 2014 году, когда эксперимент LHCb подтвердил существование тетракварков, а позже и пентакварков, названных экзотическими частицами. После этого революционного события в эксперименте LHCb и других экспериментах уже регулярно находили новые тетракварки и пентакварки, каждый со своим внутренним строением.
Длительный срок жизни нового тетракварка впервые позволил физикам точно измерить его массу. Это было сложно сделать с его короткоживущими собратьями из-за принципа неопределённости Гейзенберга. В соответствии с этим знаменитым принципом квантовой механики нельзя одновременно точно знать несколько характеристик квантово-механического объекта. Например, если точно известно положение частицы, то её импульс уже находится с большой погрешностью — неопределённостью. Аналогично обстоят дела со временем жизни частицы и её массой: если частица быстро распадается, невозможно точно определить её массу. На графике, построенном по экспериментальным данным, физики видят эту неопределённость как широкий пик, размазанный по возможным массам. Для стабильной частицы на графике появляется резкий пик, соответствующий чётко определённой массе.