Круче микроскопа: как отсканировать рельеф молекулы
В ответ на вызов дифракционного предела, не позволяющего с помощью стандартных оптических микроскопов разглядывать объекты размером менее длины световой волны, наукой создано уже немало приборов, дающих возможность этот предел обойти. Микроскопы нынешнего поколения позволяют не только разглядывать структуры молекул, но и исследовать пути манипулирования объектами субнаномира.
Говорят, «деньги любят тишину», и, наверное, Швейцария — одна из наилучших иллюстраций к этому тезису. Тишина, размеренность и богатство царят на берегах Цюрихского озера, где в окружении живописных гор живет в основном весьма состоятельная часть человечества. Интересно, однако, что такой же антураж прекрасно (судя по результатам) подходит и большой науке. Здесь же, в Цюрихе, в районе Рюшликон еще с середины 50-х годов прошлого века расположилась одна из одиннадцати на сегодняшний день лабораторий корпорации IBM.
Несмотря на то что название корпорации стойко ассоциируется у большинства с компьютерами, многонациональный научный коллектив Z? rich IBM Research ведет исследования в самых разных областях, в том числе имеющих отношение к фундаментальным основам бытия.
Комплекс выкрашенных в белый цвет малоэтажных зданий, изящный, но непритязательный дизайн внутренних помещений, подвальные этажи для лабораторий, где оборудование любит тишину еще больше, чем деньги в швейцарских банках. Лаборатории, кстати, не производят впечатление очень просторных — свободного места для прогулок маловато. Поначалу с трудом верится, что именно в таких условиях вершится большая наука.
Не больше кулака
Вот и лаборатория, где занимаются низкотемпературной микроскопией с применением сканирующего туннельного (STM) и атомного силового (AFM) микроскопов, совсем крошечная. А ведь именно здесь, в этих стенах впервые удалось получить четкое изображение химической структуры молекулы. Об этом было объявлено осенью 2009 года, и тогда же публике предъявили четкую картинку молекулы пентацена — органического соединения, в молекулярной структуре которого присутствует пять шестиугольных бензольных колец, что, конечно же, выглядело очень зрелищно.
Собственно, атомы можно было разглядеть с помощью мощных электронных микроскопов и раньше, проблема всегда была в том, что никак не удавалось зафиксировать межатомные связи — слишком они слабы. С использованием AFM задача оказалась решенной.
Лаборатория оборудована под землей — здесь почти не ощущаются вибрации грунта и здания. То, что нам показывают в качестве микроскопа, являет собой сборку из одной сферической и двух цилиндрических камер — все вместе высотой метра полтора. «На самом деле сам микроскоп совсем не такой большой, — объясняют нам сотрудники лаборатории. — Он размером приблизительно с человеческий кулак». Вся остальная конструкция служит для выполнения трех задач. Во-первых, поверхности, на которых исследуются образцы, требуют сверхчистоты, и эта чистота должна поддерживаться на протяжении длительных экспериментов. Для этого с помощью насоса в камере, куда помещают микроскоп, создается высокий вакуум.