«Космологические коаны. Путешествие в самое сердце физической реальности»
Наша Вселенная как будто намеренно спроектирована для существования жизни. Это может быть простым совпадением, а возможно, жизнь нашла бы способ возникнуть в любых условиях. В книге «Космологические коаны. Путешествие в самое сердце физической реальности» (издательство «Corpus»), переведенной на русский язык Татьяной Лисовской и Инной Кагановой, физик, космолог и математик Энтони Агирре исследует связь между структурой физического мира и субъективным человеческим опытом, предполагая, что в огромной Вселенной именно люди занимают центральное место. Для этого он заимствует методику и подход к размышлениям у дзен-буддистских притч — коанов. N + 1 предлагает своим читателям ознакомиться с отрывком, который посвящен задаче поиска легчайшего пути спуска с горы.
Дороги, которые мы выбираем
(Гималаи, 1612 год)
От вида с горного перевала захватывает дух, и ты застываешь, наслаждаясь бесконечными изгибами гор и манящими долинами, раскинувшимися под бескрайним небом. То есть дух бы наверняка захватывало, если бы ты мог нормально дышать… Ты немедленно начинаешь корить себя за то, что наслаждаться было бы гораздо легче, если бы твоя лошадь не сбежала, или повозка, в которую погружен весь твой скарб (и которую ты так легкомысленно отцепил от лошади), могла бы передвигаться сама по себе, или хотя бы дорога, по которой ты вынужден ее тащить, была бы сухой, а не размокшей из-за недавнего ливня. Ниже по склону ты видишь паутину троп, оставленных многочисленными спускающимися с перевала караванами. Ты слишком устал, чтобы как следует обдумать, какой путь самый лучший, и начинаешь спускаться по первой попавшейся тропе. Но очень скоро ты осознаешь, что ошибся, и приходишь к двум важным заключениям. Во-первых, повозка слишком тяжела, чтобы ты смог протащить ее по поднимающейся вверх тропе на заметное расстояние. Если же уклон становится слишком пологим, повозка увязает и ее очень трудно сдвинуть — и значит, существует минимальная крутизна тропинки, при которой ты с твоей повозкой можешь передвигаться. Во-вторых, пользоваться крутыми спусками гораздо легче и приятнее. Но если выбирать только их, то часть времени неизбежно придется либо перемещаться по слишком пологим участкам, либо подниматься в гору. Соответственно, ты должен найти баланс между крутыми участками пути и участками более пологими, которых на твоем пути больше. Наконец ты видишь вдалеке свою цель — все тропинки сходятся там у реки, которая разливается по равнине. Но вот вопрос: по какой тропе ты можешь попасть туда с наименьшими усилиями? Твои ноги гудят от усталости. Ты вспоминаешь, что вся еда осталась в тюках, навьюченных на лошадь, и что ты уже давно не ел. Руки и спина ноют от тяжелой ноши. Сложная сеть скрещивающихся троп протянулась на многие мили вниз по склону горы. Но как выбрать свою тропу? Так выбери же ту, что подходит именно тебе!
Поэт мог бы сказать, что вода течет с горы вниз из-за того, что ее притягивает море, но физик и обычный смертный скажет, что она течет так, как течет в каждой точке из-за того, что так устроена земная поверхность в данной точке, независимо от того, что лежит впереди. Бертран Рассел «Азбука относительности»
Проблема спуска с горы с затратой наименьшего усилия — это очень распространенный тип задачи о том, как выбрать путь в пространстве, когда какой то параметр минимизируется. Например, мы часто ищем путь наименьшей длины, то есть хотим попасть к месту назначения самым быстрым из всех возможных способом. Эта задача предполагает, что вы — в уме или на бумаге — перечислите возможные пути, измерите их длину и найдете кратчайший. Но вскоре вы можете обнаружить, что кратчайший и быстрейший пути — это не одно и то же: иногда по более длинной автостраде вы доедете гораздо быстрее, чем по короткой проселочной дороге. Чтобы найти самый быстрый путь, вы должны каждый из возможных путей разбить на сегменты длиной ∆ d и в каждом сегменте оценить скорость v, с которой вы можете преодолеть этот сегмент. Время, за которое вы преодолеваете данный сегмент, равно ∆ t = ∆d/v, а суммируя время по всем сегментам, вы получаете общее время, которое затрачивается при движении по этому пути. Сравнивая времена, относящиеся ко всем возможным путям, вы находите самый быстрый.