Правительство Японии разрешило сбрасывать в океан воду с АЭС «Фукусима-1»

ЭкспертОбщество

Вода Счастливого острова

Правительство Японии разрешило сбрасывать в океан обезвреженную от радиации воду, накапливаемую более десяти лет на пристанционной площадке аварийной АЭС «Фукусима-1». Несмотря на протесты соседних государств, операция действительно не представляет опасности для экосистемы Мирового океана и здоровья людей

Ирик Имамутдинов

Тринадцатого апреля кабинет министров Японии официально разрешил слить с аварийной АЭС «Фукусима-1» в океан значительный массив накопившейся воды, использовавшейся для охлаждения объектов станции и подвергшейся радиоактивному загрязнению. Премьер-министр Японии Ёсихидэ Суга заверил, что операция будет произведена с соблюдением всех необходимых мер безопасности, а сливаемая в океан вода будет предварительно очищена от радиоактивных веществ.

По оценкам японцев, процесс подготовки к операции займет примерно два года. Однако уже осенью 2022-го все имеющиеся на территории станции резервуары для отработанной воды будут заполнены.

Сейчас в стальных баках на территории «Фукусимы-1» скопилось более 1,25 млн тонн воды, загрязненной радиоактивными изотопами. Вода накачивается из океана для охлаждения расплавленного топлива в разрушенных реакторах и затем перекачивается в хранилища, предварительно проходя через систему очистки жидкости (Advanced Liquid Processing System, ALPS), которая улавливает большинство радиоактивных изотопов, включая стронций, плутоний и цезий. Но система не способна удалить из воды тритий.

Японские официальные лица утверждают, что еще до сброса из резервуаров в океан вода будет разбавлена до пропорций, делающих концентрацию трития безопасной. Министерство экономики, торговли и промышленности Японии заверило, что расчетное содержание трития до сброса будет в 40 раз ниже уровня международной нормы, разрешенного для технической воды. Тем не менее решение о сливе воды с аварийной АЭС в океан вызвало противоречивую реакцию в стране и за рубежом.

Регионы Японии, наиболее сильно пострадавшие от землетрясения и цунами в марте 2011 года

Источник: Kyodo News

Против сброса воды выступает население префектуры Фукусима. Самый ярый оппонент решения внутри страны — Всеяпонская ассоциация рыболовецких кооперативов. Ее руководство ранее категорически заявило об этом на встрече с премьер-министром. Компания — оператор станции Tokyo Electric Power (TEPCO) уже выразила готовность компенсировать рыбакам потери от падения доходов в связи с возможным сокращением сбыта их продукции, но рыбаки не успокаиваются.

Глубокую озабоченность по поводу сброса воды также выразили внешнеполитические ведомства Китая и Южной Кореи.

«Японская сторона еще не исчерпала все безопасные пути, не обращая внимания на внутреннюю и внешнюю оппозицию, решила в одностороннем порядке выпустить ядерные сточные воды АЭС “Фукусима” без всесторонних консультаций с соседними странами и международным сообществом, — говорится в заявлении МИД КНР. — Это в высшей степени безответственное действие, которое причинит серьезный вред здоровью и безопасности людей в соседних странах и международному сообществу».

Более дюжины гражданских активистов устроили пикет протеста напротив посольства Японии в Сеуле, а корейское правительство собралось на экстренное заседание. С жесткими заявлениями предсказуемо выступили и «зеленые». Шон Бруни, старший специалист по ядерным проблемам японского отделения Greenpeace, заявил, что Восточно-Китайское море уже получило загрязнение цезием, просочившимся из аварийной станции «Фукусима-1» после 2011 года, что угрожает воздействием на ДНК морских организмов и человека.

Китай, Южная Корея, Тайвань — в числе 15 государств, которые ограничивают импорт продовольствия и морепродуктов, районы происхождения которых находятся вблизи аварийной японской АЭС.

Не стал отмалчиваться и российский МИД. «Правительство Японии не консультировалось с Россией по поводу планов сбросить воду с АЭС “Фукусима-1” в океан и не предоставило достаточную информацию по поводу решения», — сообщила официальный представитель министерства Мария Захарова. Согласно заявлению, МИД РФ серьезно озабочено этими планами и рассчитывает, что Япония позволит при необходимости проводить радиационный мониторинг в местах сброса.

США же отреагировали весьма сдержанно. Госдеп заявил, что японское правительство «взвесило все варианты и эффекты» и обеспечило прозрачность своего решения.

Но еще более показательно, что главный международный «атомный регулятор» МАГАТЭ поддержал решение Токио. Генеральный директор агентства Рафаэль Гросси заявил, что решение сбросить очищенную отработанную воду в океан научно обосновано и является стандартной практикой в атомной индустрии повсюду в мире.

Так где же все-таки правда? Влечет ли за собой решение слить воду с аварийной АЭС в океан, пусть даже предварительно очищенную и разбавленную, значимые риски для морской экосистемы и здоровья людей?

Эхо катаклизма

Природно-техногенная катастрофа на АЭС «Фукусима-1» произошла 11 марта 2011 года. Название станции, как и самой префектуры на северо-востоке главного острова страны Хонсю, в 250 километрах от Токио (от Чернобыля до Киева, к слову, по прямой менее 100 километров), которое переводится с японского как «Счастливый остров», не стало оберегом от большой беды.

Эпицентр сильнейшего в истории Японии землетрясения магнитудой более девяти баллов находился под морским дном в 70 километрах от берега — идеальный триггер для цунами. Сами толчки АЭС выдержала достойно: все объекты станции уцелели, штатно сработала автоматическая система аварийного отключения реакторов. А вот защита от цунами, как оказалось, была недостаточной.

Серия гигантских волн достигла побережья у станции через сорок минут после подземных толчков. Промплощадка была защищена от первой волны, имевшей высоту наката четыре-пять метров, волноломами, рассчитанными на обеспечение защиты от волн с максимальной высотой пять с половиной метров, но через десять минут на волноломы обрушилась вторая и самая большая волна с высотой наката 14–15 метров, которая затопила всю площадку станции, включая реакторные здания, турбинные залы и вспомогательные сооружения. Самым драматическим оказалось то, что волна вывела из строя электродвигатели насосов в местах забора морской воды на береговой линии, а также аварийные дизель-генераторы. В результате пять из шести расположенных на станции энергоблоков оказались обесточены.

До какого-то времени перегрева тепловыделяющих сборок (ТВС) из-за прекратившейся прокачки воды удавалось избежать, но потом давление в реакторах стало быстро повышаться. Сначала избыточное давление стравливалось в гермообъем — пространство, окружающее реактор, закрытое герметичным металлическим контайнментом. Затем давление внутри этой защитной оболочки выросло вдвое по сравнению с нормативными значениями, и пар пришлось сбрасывать в пространство реакторного зала, все еще локализуя высокую радиоактивность внутри самих блоков. Этот пар уже в больших количествах содержал радионуклиды различных веществ и водород. Этот водород, смешавшись с атмосферным воздухом в реакторном отделении, сдетонировал — и последовала серия взрывов, разрушивших здания реакторных залов. Кроме того, в реакторах трех энергоблоков расплавилось ядерное топливо, которое насквозь прожгло защитные оболочки и проникло в почву. Все эти коллизии сопровождались выбросом радиоактивности в атмосферу и подземные воды, что привело к заражению прилегающих к станции районов.

Отдельную угрозу распространения радиации представляли и приреакторные бассейны выдержки, которые обычно используют для временного хранения отработанного ядерного топлива использованных ТВС, вынутых из реактора, до их перевозки на постоянное место хранения. При отсутствии охлаждения хранящиеся в них топливные сборки тоже расплавились, внося свою — и весьма значительную — лепту в послеаварийные радиоактивные последствия, которые, по оценкам, составили в итоге десятую часть чернобыльских. Подробно механизм аварии мы разобрали по горячим следам, первыми из российских СМИ, в материале «Точка невозврата» (см. «Эксперт» № 11 за 2011 год).

Для охлаждения реакторов первого, второго и третьего блоков, где расплавилось ядерное топливо, а также в бассейны выдержки до сих пор непрерывно закачивают чистую морскую воду (она не идеальный теплоноситель, но выбирать не приходится), которая, просачиваясь через проплавленные в установках прорехи, заполняет все подреакторное пространство, смешивается с грунтовыми водами. Поэтому жидкие радиоактивные отходы (ЖРО) стали главной головной болью для ликвидаторов последствий аварии на первом этапе полного вывода АЭС из эксплуатации, который по предварительным оценкам TEPCO будет завершен не ранее 2041 года.

В списке жертв землетрясения и цунами 2011 года на сегодня числится свыше 22 тыс. человек, включая пропавших без вести и тех, кто умер впоследствии от обострения хронических болезней и стресса. Но непосредственно от радиации никто не погиб — из районов, прилегающих к аварийной АЭС, было экстренно эвакуировано около 165 тыс. человек.

За прошедшие десять лет на восстановление пострадавших от цунами районов и зоны эвакуации в Фукусиме было потрачено более 288 млрд долларов. В 2018 году была завершена дезактивация основной части зараженных участков в районе АЭС. Туда стали возвращаться люди.

Число жертв землетрясения и цунами в марте 2011 г. в Японии превысило 22 тыс. человек

Источник: Kyodo News по данным японской полиции

Сверхтяжелая вода

А что делать с «грязной» водой? На первых порах после аварии радиоактивность воды под «протекшими» первыми тремя реакторами «Фукусимы» превышала норму более чем в 10 тыс. раз. Сразу после аварии было не до переработки ЖРО, и в резервуары вода закачивалась фактически без всякой очистки.

Постепенно оборудование очистки отладили, и большая часть радиоактивного загрязнения из воды, которая контактировала с поврежденными реакторами и обломками, теперь удаляется по технологии ALPS, которой располагает ТЕРСО. По этой технологии до значений, не превышающих нормативные, перерабатываются 62 радиоактивные составляющие ЖРО, включая цезий и плутоний. Но эта технология, как уже упоминалось, не способна удалить из «грязной» воды тритий — самый тяжелый изотоп водорода, который плохо поддается дезактивации. Дело в том, что тритий химически входит в состав тритиевой (супертяжелой) воды 3H2O, и системы очистки не отличают ее от обычной воды.

Понятно, что эта проблема знакома специалистам давно: в мире немало реакторных установок типа Candu, работающих на тяжелой воде (в ее молекулярном составе изотоп водорода — дейтерий), где образуется много тритиевой воды. Установки по удалению трития из тяжелой воды из реакторов Candu сейчас работают, к примеру, на АЭС «Дарлингтон» в Канаде и на корейской АЭС «Вольсун», кстати, одном из самых больших «производителей» трития в Тихоокеанском регионе, за шесть-семь лет сливающем его в океан примерно столько же, сколько в целом находится сейчас в баках на территории станции «Фукусима-1». Но одно дело перерабатывать относительно небольшой объем жидкости, циркулирующей по замкнутому циклу (на «Дарлингтоне» проходит очистку 360 литров в час, а на «Вольсуне» и вовсе сто), и другое — переработка свыше миллиона тонн, скопившихся на «Фукусиме».

Предвидя огромный объем содержащей тритий жидкости, от которой предстоит избавиться, компания TEPCO еще в 2013 году пригласила экспертов к обсуждению проблемы. Их вердикт был однозначен: невозможно накапливать всё новые и новые объемы грязной воды, хронически запаздывая с ее очисткой и отказываясь сливать ее в океан контролируемым образом, и при этом обеспечить полное отсутствие протечек.

В качестве альтернативного способа избавиться от накопившейся отработанной воды японские эксперты рассматривали выпаривание. Однако сброс в океан оказался проще и дешевле, к тому же он лучше поддается мониторингу.

TEPCO, похоже сразу определившаяся с вариантом «слива», все же попыталась показать, что ищет более удобоваримые для общественности варианты утилизации накапливаемой воды. В 2014 году по заказу «РосРАО» (сейчас — «Федеральный экологический оператор») петербургский Радиевый институт имени В. Г. Хлопина разработал технологию удаления неудобного изотопа водорода. Агентство по природным ресурсам и энергетике Японии инвестировало более пяти миллионов долларов в демонстрационную установку. Однако дальше испытаний, закончившихся в 2016 году, дело не пошло: эксперты обеих сторон сочли, что технологию реализовать можно, но очень дорого: только строительство очистного предприятия обошлось бы более чем в 300 млн долларов, и это не считая эксплуатационных затрат. Вторичная же очистка накопленной жидкости, ее разбавление морской водой и дальнейший слив в океан, по оценкам TEPCO, стоили бы на порядок меньше.

Понимая, что программа накапливания не может длиться бесконечно, в TEPCO приняли меры по сокращению объемов жидкости, содержащей радиоактивные нуклиды и откачиваемой из помещений АЭС «Фукусима-1», почти в шесть раз с момента аварии — с 800 до 140 кубометров в 2020 году.

В мае 2014-го компания начала отводить и сбрасывать незагрязненные подземные воды прямо в море. Годом позже была построена «замораживаемая» с помощью криогенной техники стена, закрывающая путь чистым подземным водам на станционную площадку. Принятые меры дали свой результат, и если к началу 2015 года для хранения примерно 800 тыс. кубометров обработанной жидкости требовалось уже около 830 цистерн, то за следующие пять лет к ним добавилось менее 200, и сейчас более чем в тысяче емкостей хранится более 1,25 млн тонн воды.

Действующие нормативы по содержанию трития в технической и питьевой воде (беккерелей на литр, Бк/л)

  • Уровни вмешательства для питьевой воды в соответствии с российскими нормами радиационной безопасности — 7 600
  • Международные пределы содержания трития в питьевой воде (нормы ВОЗ) — 10 000
  • Допустимая активность для сбрасываемой технической (реакторной) воды — 60 000
  • Критерий отнесения воды к жидким радиоактивным отходам в соответствии с российскими нормами радиационной безопасности — 1 000 000

Источник: Институт проблем безопасного развития атомной энергетики РАН

Риск минимален

В целом экспертное сообщество спокойно относится с планируемому сбросу, соглашаясь с расчетами как японских специалистов, так и МАГАТЭ: при контролируемом сливе воды с АЭС в океан уровень радиоактивности составит до 0,62 микрозиверта в морской воде и 1,3 микрозиверта в атмосфере, а человек только естественным путем получает облучение в размере 2100 микрозивертов в год.

Содержание трития в воде, которую предполагается через два года начать сбрасывать в океан из цистерн на территории АЭС «Фукусима-1», будет менее 1500 беккерелей* на литр, что составляет одну сороковую от разрешенной японскими стандартами безопасности и одну седьмую от стандартов Всемирной организации здравоохранения для питьевой воды.

*Беккерель — единица измерения активности радиоактивного источника в Международной системе единиц. Один беккерель определяется как активность источника, в котором за одну секунду происходит в среднем один радиоактивный распад.

К тому же срок вывода станции рассчитан по крайней мере еще на тридцать лет, что позволит избежать одномоментного высвобождения в окружающую среду сколько-нибудь значительной радиоактивности.

В специальном заключении Института проблем безопасного развития атомной энергетики РАН, размещенном на сайте института 15 апреля, говорится, что сброс в океан даже такого объема воды, содержащей тритий, не станет критическим для водных организмов и рыбы, а также не повлияет на их потребительские качества и здоровье населения при условии их добычи вне ближней зоны АЭС «Фукусима-1». В течение нескольких месяцев после завершения процесса сброса концентрация трития в морской воде снизится за счет разбавления до естественных уровней. Поступление в океан других радиоизотопов в случае сброса вод с площадки АЭС будет минимальным благодаря уже функционирующей системе очистки, позволяющей снизить концентрацию радиоизотопов стронция, цезия и плутония до уровней значительно ниже допустимых пределов.

В заключение приведем любопытный факт: если из всей накопленной на «Фукусиме» жидкости выделить чистую тритиевую (сверхтяжелую) воду, то ее выйдет всего 16 граммов.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Дорожники объединяются в цифровой альянс Дорожники объединяются в цифровой альянс

Российскую строительную отрасль железной рукой гонят в «цифру»

Эксперт
Ученые хотят победить старость, но как далеко им удалось зайти? Ученые хотят победить старость, но как далеко им удалось зайти?

Есть ли у нас шанс прожить свой век в молодом и здоровом теле?

Популярная механика
Резина долго тянется Резина долго тянется

Цель ЭМИРП: добиться статуса поставщика РЖД с подшпальными прокладками

Эксперт
Минус 10 кг за месяц: как есть пиццу каждый день и худеть Минус 10 кг за месяц: как есть пиццу каждый день и худеть

Не готова отказываться от любимых продуктов, но хочешь похудеть?

Cosmopolitan
Российские бренды вышли из пандемии Российские бренды вышли из пандемии

Российская одежная индустрия получила новый импульс для развития

Эксперт
Матрасам дадут вторую жизнь Матрасам дадут вторую жизнь

Компания «Нафта-Хим» запускает переработку старых матрасов

Эксперт
Роботы отправляются в мусор Роботы отправляются в мусор

Применение ИИ позволяет в разы уменьшить стоимость сортировки отходов

Эксперт
Пандемия, китайский фактор и суэцкий кризис Пандемия, китайский фактор и суэцкий кризис

Транспортный коллапс в Суэцком канале

Эксперт
Гранитный линкор Гранитный линкор

В Заполярье план «Барбаросса» рухнул через месяц после начала войны

Эксперт
«Оскар-2021» глазами психолога: расставляем «диагнозы» фильмам «Оскар-2021» глазами психолога: расставляем «диагнозы» фильмам

Деменция, нарциссизм и другие проблемы в фильмах-номинантах «Оскара-2021»

Psychologies
У мшанок обнаружили уникальный тип строения плаценты У мшанок обнаружили уникальный тип строения плаценты

Ученые описали у мшанок плаценту, состоящую из ценоцитов

N+1
Привычки сна Мадонны, Трампа, Джоан Роулинг и других успешных людей Привычки сна Мадонны, Трампа, Джоан Роулинг и других успешных людей

Что такое привычки сна, как они формируются и насколько они полезны?

РБК
Чистка зубов и ходьба: 10 неожиданных вещей, которые могут вызвать оргазм Чистка зубов и ходьба: 10 неожиданных вещей, которые могут вызвать оргазм

Знаешь ли ты, что можно испытать удовольствие от вещей, не связанных с сексом?

Cosmopolitan
Медленно, но верно Медленно, но верно

Найти свой рабочий ритм, следовать ему и при этом все успевать

Psychologies
5 простых способов сделать свою жизнь лучше уже сегодня 5 простых способов сделать свою жизнь лучше уже сегодня

«Перезагрузиться» никогда не поздно, и начать можно прямо сейчас

Psychologies
9 лучших корейских фильмов. История любви девочки к свинобегемоту, корейская погоня за американской мечтой и экранизация Мураками 9 лучших корейских фильмов. История любви девочки к свинобегемоту, корейская погоня за американской мечтой и экранизация Мураками

«Паразиты», «Горничная», «Пылающий», «Олдбой» и многих других азиатских шедевров

Esquire
Ложитесь в постель со смартфоном в руках? Прислушайтесь к этим советам Ложитесь в постель со смартфоном в руках? Прислушайтесь к этим советам

Как успокоиться и настроиться на отдых с помощью мобильного

Psychologies
Почему сериал «Сквозь снег» лучше одноименного фильма: Объясняем финал второго сезона Почему сериал «Сквозь снег» лучше одноименного фильма: Объясняем финал второго сезона

Почему сериальная адаптация комикса «Сквозь снег» оказалась интереснее фильма

Популярная механика
«Возьми и сделай»: что не так с выходом из зоны комфорта? «Возьми и сделай»: что не так с выходом из зоны комфорта?

Зона комфорта: кто в ней находится и кому стоит ее покинуть?

Psychologies
Растения-преступники: одни доведут до слез, другие убьют Растения-преступники: одни доведут до слез, другие убьют

Отрывок из книги Эми Стюарт «Коварные растения»

СНОБ
Главное – успеть Главное – успеть

Летнее путешествие мечты, которое нужно бронировать прямо сейчас

Лиза
Цвет мой, зеркальце Цвет мой, зеркальце

Почему цвет лица может быть серым, красным, синюшным и как его освежить?

Лиза
Почему «Гнев человеческий» — самый впечатляющий боевик за последнее время Почему «Гнев человеческий» — самый впечатляющий боевик за последнее время

Служба инкассаторов — опасна и трудна

GQ
Сын Баскова, дочь Батрутдинова и другие звездные дети, о которых мало кто знает Сын Баскова, дочь Батрутдинова и другие звездные дети, о которых мало кто знает

Звезды, которые стали родителями, но этот факт не так широко известен

Cosmopolitan
Симптомы и причины возникновения расстройств аутистического спектра Симптомы и причины возникновения расстройств аутистического спектра

Как живут люди с расстройством аутистического спектра в России

РБК
Русский гребень Русский гребень

История мастера, шьющего русские кокошники

Вокруг света
Автор фильма «Дуров» Родион Чепель — о том, как снять фильм о герое без героя и чем документалка отличается от блогерского репортажа Автор фильма «Дуров» Родион Чепель — о том, как снять фильм о герое без героя и чем документалка отличается от блогерского репортажа

Родион Чепель — о взаимодействии с главным героем его фильма «Дуров»

Esquire
Транспозоны помогли найти оптимальные участки для разрезания белков Транспозоны помогли найти оптимальные участки для разрезания белков

Биологи: делить белок на половинки можно с помощью транспозонов

N+1
Стюарт Тёртон: Дьявол и темная вода. Глава из нового романа Стюарт Тёртон: Дьявол и темная вода. Глава из нового романа

Книга о восьмимесячном пути через Индийский океан, вокруг Африки — в Европу

СНОБ
3 признака токсичного слушателя 3 признака токсичного слушателя

Многие из нас совершенно не умеют слушать других. Признаки токсичного слушателя

Psychologies
Открыть в приложении