Споры о культурном значении математики переживают острую фазу

Вокруг светаНаука

Числа не от мира сего: о чем до сих пор спорят математики?

Споры о культурном значении математики переживают острую фазу. Если будет все-таки доказано, что числа нельзя считать изобретением человеческого разума, знание о них придется назвать «божественным даром»

Дмитрий Баюк

Слово «счет» на трибунах стадионов может значить совсем не то же самое, что на игровом поле. Но и там оно не менее важно. Фото Selfwood / Alamy via Legion Media

Четыреста лет назад великий немецкий математик и астроном Иоганн Кеплер (1571–1630) писал в своей автобиографии, что числа с детства завораживали его. Ведь это единственная известная нам вещь, существовавшая до сотворения мира.

Вероятно, того же мнения придерживался и Блаженный Августин (354–430). Он полагал:

«Число шесть совершенно само по себе, а не потому, что Господь сотворил всё сущее за шесть дней. Скорее наоборот: Бог сотворил все сущее за шесть дней, потому что это число совершенно. И оно оставалось бы совершенным, даже если бы не было сотворения за шесть дней».

Совершенными называют числа, равные сумме своих делителей: 6 = 1×2×3 = 1+2+3. Во времена Августина таких чисел было известно всего четыре: 6, 28, 496 и 8128. Из приведенного рассуждения следует, что до творения число шесть не только существовало, но уже тогда оно было совершенным. А значит, уже тогда существовали операции над ними.

Инстинктивное чувство числа, от природы присущее не только людям, но и некоторым животным. Умение считать приобретается людьми в процессе своего развития. Очевидно, научиться считать могут не только люди, но никак нельзя сказать, что кто-то обладает этим умением от природы.

Чувство числа

Очевидно, человек, а также некоторые другие животные могут определить количество одинаковых предметов в множестве «с первого взгляда», не считая. В своей знаменитой книге «Числа: язык науки» российско-балтийско-немецко-американский математик Тобиас Данциг (1884–1956) рассказывает такую историю:

Один землепашец решил застрелить ворону, которая свила гнездо на сторожевой башне его имения. Неоднократно он пытался застать птицу врасплох, но безуспешно: как только он приближался, ворона оставляла свое гнездо. На отдаленном дереве она настороженно выжидала, пока человек покинет башню, а потом возвращалась к гнезду. Однажды землевладелец придумал хитрость: два человека вошли в башню, один остался внутри, другой вышел из башни и ушел. Но птица не обманулась, она держалась поодаль, пока не ушел и второй человек. В последующие дни эксперимент повторили с двумя, тремя, затем четырьмя людьми, и все безуспешно. Наконец в башню направилось пять человек. Как и прежде, все вошли, один остался в башне, тогда как четверо вышли и ушли. И тут ворона сбилась со счета. Она не смогла отличить четыре от пяти и сразу же вернулась в свое гнездо.

Ворона была едва ли ни первым животным, у которого отчетливо обнаруживалось чувство числа. Фото John Eveson / Alamy via Legion Media

Ворона не считала людей, иначе ничего не помешало бы ей установить, что каждый раз количество уходивших на единицу меньше количества пришедших. Она оценивала количество «на глазок», действуя инстинктивно. И это далеко не единственный пример инстинктивного восприятия числа животными. Несколько лет назад австралийским биологам удалось подтвердить умение распознавать на вид количества до четырех у медоносных пчел.

Нечасто подобную способность обнаруживают у млекопитающих, хотя она совсем не редкость у насекомых или рыб. Умение животных определять количества давно интригует ученых. Отчасти потому, что люди в своих способностях довольно мало чем от них отличаются. А отчасти потому, что весь феноменальный технологический прогресс человечества строится на расширении природного чувства благодаря искусству.

Об ограниченности «чувства числа» у людей свидетельствует, например, тот факт, что в примитивных языках ряд числительных очень короток. Иногда он обрывается уже на двойке — числительных оказывается в этом случае всего два: один и много. Иногда «много» наступает вслед за двойкой — чаще всего это случается у народов, распознающих парные предметы, и тогда два дерева все равно будут обозначаться как «много», потому что они не образуют пары. Чаще всего ряд обрывается на пятерке, а современные аборигены Австралии не имеют в своих языках числительных для обозначения чисел больших трех.

Знать и уметь

Пока нет ответа на вопрос, когда именно люди поняли, что чисел не два, не четыре и даже не шестьдесят, а бесконечно много. Есть основания полагать, что если это событие произошло и до возникновения школы Пифагора, то незадолго. И толчком к нему послужило открытие счета, подразумевающее не столько зрительное распознавание разных количеств, сколько умение их упорядочивать.

Канадские индейцы у острова Ванкувер. В индейских языках встречается несколько рядов числительных, применяемых в различных ситуациях, но каждый из этих рядов очень короток. Фото Edward S. Curtis из архива Библиотеки Конгресса США

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Открыть в приложении