Как устроен объяснимый ИИ и какие проблемы он решает

РБКHi-Tech

Интеллект, понятный каждому

Как устроен объяснимый ИИ и какие проблемы он решает

Автор: Мария Решетникова

Современные разработки в сфере искусственного интеллекта упираются в проблему «черного ящика», которая ставит под сомнение объективность и точность моделей. Решением может стать прозрачный и объяснимый ИИ.

Объяснимый искусственный интеллект представляет собой следующий шаг в развитии ИИ, который сделает технологию более понятной и прозрачной. Внедрение объяснимого ИИ позволит расширить сферу его применения на отрасли, которые работают с потенциально чувствительными данными,— медицину, финансы, судопроизводство и другие.

Что такое объяснимый ИИ

Объяснимый ИИ (Explainable AI, XAI)—это направление исследований в области искусственного интеллекта. Оно стремится создать системы и модели, способные объяснять свои действия и принимать решения понятным для людей образом, чтобы повысить доверие к ИИ. Объяснимый ИИ используется для описания алгоритмов, а также ожидаемых последствий их работы и возможных отклонений. Для этого используются методы визуализации, более простые алгоритмы, а также интерактивные интерфейсы с подсказками.

Благодаря XAI, а также объяснимым процессам машинного обучения организации могут получить доступ к процессам принятия решений, лежащим в основе технологии, и вносить в них коррективы. Он также позволяет улучшить взаимодействие с пользователями, повышая доверие с их стороны.

Характеристики XAI

Объяснимый ИИ должен включать в себя три основных элемента.

Точность прогноза. Запустив моделирование и сравнив выходные данные XAI с результатами в наборе обучающих данных, можно определить точность работы модели. Самый популярный метод, используемый для этого,—это локальные интерпретируемые модельно-агностические объяснения (LIME), которые позволяют объяснить каждый прогноз нейросети. Они анализируют входные данные после того, как те проходят через алгоритм, и сравнивают полученный результат с прогнозируемым. Для этого LIME используют собственный специально обученный на этих данных алгоритм. Сравнение позволяет понять ход рассуждения исходной нейросети.

Прослеживаемость. Она достигается в том числе за счет ограничения способов принятия решений и установления более узкой области применения правил и функций машинного обучения. Примером метода отслеживания XAI является DeepLIFT (Deep Learning Important FeaTures—важные функции глубокого обучения), который сравнивает работу каждой точки («нейрона») нейросети с эталонным показателем и показывает зависимости между ними.

Объясняемость и интерпретируемость. Это показатели, которые отображают, насколько наблюдатель может понять причину принятия решения, а также предсказать вероятность успеха работы модели. Существуют специальные технологии, которые обеспечивают визуализацию этих показателей. Например, What-if—инструменты для визуального исследования поведения обученных моделей, тестирования их производительности в гипотетических ситуациях и анализа важности различных функций данных.

Преимущества XAI

Внедрение объяснимого ИИ дает ряд положительных эффектов как в коммерческом, так и в государственном секторах:

  • повышение производительности, более быстрое выявление ошибок в модели;
  • укрепление доверия со стороны клиентов и пользователей;
  • снижение регуляторных и других рисков.

В некоторых странах внедрение объяснимого ИИ станет обязательным требованием для компаний со стороны государств. Европарламент уже принял закон под названием AI Act, который устанавливает правила и требования для разработчиков моделей ИИ. Они должны обеспечить прозрачность работы таких систем.

Технологии XAI

Для создания объяснимого ИИ применяются следующие основные техники машинного обучения:

  • деревья решений выдают четкое визуальное представление процесса принятия решений ИИ;
  • системы на основе правил выводят алгоритмические правила работы в понятном для человека формате;
  • байесовские сети, или модели вероятностей, которые показывают причинно-следственные связи в работе алгоритма и объясняют неопределенности;
  • линейные модели демонстрируют, как каждый входной параметр влияет на решение нейросети.

Перспективы внедрения XAI

Несмотря на все плюсы XAI, внедрение такого ИИ сталкивается с рядом препятствий, таких как:

отсутствие консенсуса по определениям нескольких ключевых понятий—некоторые исследователи используют термины «объяснимость» и «интерпретируемость» как синонимы, а другие четко разделяют их;

недостаток практических рекомендаций по поводу того, как выбирать, внедрять и тестировать XAI;

отсутствие понимания, должен ли объяснимый ИИ быть понятным для обычных пользователей.

Отдельные исследователи предложили идею «белого ящика», или моделей, которые будут объяснимыми и прозрачными. Так, систему ИИ можно разбивать на модули, каждый из которых может быть интерпретирован, либо изначально строить модели с соблюдением правил прозрачности, чтобы разработчик не терял контроль над ситуацией.

Однако другие эксперты считают, что и «белый ящик» не решит проблему доверия к ИИ со стороны людей, у которых нет технического образования. По их мнению, XAI и объяснимый ИИ — это лишь часть более широких усилий для создания искусственного интеллекта, работа которого будет понятна любому человеку.

Тайны «черного ящика»

XAI использует специальные методы, позволяющие отслеживать и объяснять каждое решение, принятое в процессе машинного обучения. ИИ же обучается с помощью алгоритма, архитектура которого не до конца понятна. Эту проблему принято называть «черным ящиком»: даже если система дает точные ответы, зачастую сложно выяснить, как именно она пришла к такому решению.

Аналогичным образом сложно понять, когда именно система начала ошибаться в ответах и чем это было вызвано. Профессор компьютерных наук Университета Луисвилля Роман Ямпольский в своей работе «Необъяснимость и непостижимость искусственного интеллекта» отмечал: «Если все, что у нас есть,—это «черный ящик», то невозможно понять причины сбоев и повысить безопасность системы. Кроме того, если мы привыкнем принимать ответы ИИ без объяснения причин, мы не сможем определить, не начал ли он давать неправильные или манипулятивные ответы. Это чрезвычайно опасная дорога, на которую мы ступаем».

Преимущества «черного ящика» заключаются в том, что такое обучение происходит быстрее и стоит дешевле, а также позволяет давать системе для обучения сразу большой массив данных. Современные модели, такие как GPT и Alpha Zero, обучаются именно по модели «черного ящика». Так, OpenAI —разработчик ChatGPT, DALL-E и других ИИ-систем—не стала раскрывать набор данных, использованных для обучения модели GPT-4.

Участники сообщества раскритиковали действия компании, отметив, что они затрудняют разработку средств защиты от угроз, исходящих от систем ИИ. Вице-президент по информационному дизайну Бен Шмидт, который работает в стартапе моделей ИИ с открытым исходным кодом Nomic AI, считает, что выход GPT-4 «может положить конец «открытому» ИИ».

Такой подход имеет и другие негативные стороны—в «черном ящике» сложнее выявить предвзятость алгоритма и оценить качество входных данных. На эту проблему указали исследователи из Пало-Альто, центра Кремниевой долины. Они отмечали, что при обучении больших языковых моделей используются массивы данных из интернета, которые не отражают интересы всех групп населения, поскольку у некоторых из них просто нет доступа к Cети.

Хочешь стать одним из более 100 000 пользователей, кто регулярно использует kiozk для получения новых знаний?
Не упусти главного с нашим telegram-каналом: https://kiozk.ru/s/voyrl

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Александр Архангельский: «Может ли ИИ в перспективе написать «Войну и мир»? По-моему, может» Александр Архангельский: «Может ли ИИ в перспективе написать «Войну и мир»? По-моему, может»

Профессор ВШЭ Александр Архангельский — о судьбе бумажных книг и их авторов

РБК
«Все время чего-то не хватает для счастья»: как перестать гнаться за успехом и начать радоваться тому, что есть «Все время чего-то не хватает для счастья»: как перестать гнаться за успехом и начать радоваться тому, что есть

Как не потерять вкус к жизни в погоне за достижениями?

Psychologies
Владимир Васильев: «Гонка технологических «вооружений» уже началась» Владимир Васильев: «Гонка технологических «вооружений» уже началась»

Владимир Васильев – о влиянии больших языковых моделей на будущее человека

РБК
Этот всеми любимый напиток повышает риск развития деменции в 3 раза: лучше не злоупотреблять! Этот всеми любимый напиток повышает риск развития деменции в 3 раза: лучше не злоупотреблять!

У людей, употребляющих этот напиток ежедневно, наблюдается снижение памяти

ТехИнсайдер
Движение вокруг недвижимости Движение вокруг недвижимости

Как искусственный интеллект захватывает один из ключевых рынков

РБК
Мама-предприниматель: какой бизнес чаще выбирают женщины в России Мама-предприниматель: какой бизнес чаще выбирают женщины в России

Почему в современном мире женщинам не нужно выбирать между семьей и карьерой

Inc.
Много шума — и ничего Много шума — и ничего

Антирейтинг — топ-7 наиболее значимых технологических провалов нашего времени

РБК
Риски трампфляции Риски трампфляции

Поможет ли инфляция в борьбе с глобальным долгом

Деньги
Сергей Шумский: «У роботов не будет инстинкта власти, как у человека» Сергей Шумский: «У роботов не будет инстинкта власти, как у человека»

Минувший год имеет шансы войти в историю как время взрывного роста нейросетей

РБК
Эдуард Ратников — о театре «Одеон» и жизни без больших концертов Эдуард Ратников — о театре «Одеон» и жизни без больших концертов

Эдуард Ратников и его путь от стадионных шоу до мюзиклов

Правила жизни
Конец истории о глобальных русских Конец истории о глобальных русских

Главная задача в ближайшие годы — избавление от интеллектуальной оккупации

Эксперт
И твоя мама тоже И твоя мама тоже

«Все совпадения неслучайны»: первый сериал Альфонсо Куарона

Weekend
Дом Cердца Дом Cердца

Как старое здание в колониальном стиле превратить в пространство для творчества

Seasons of life
Одиночество вдвоем или семейное выгорание: как распознать и преодолеть кризис в отношениях Одиночество вдвоем или семейное выгорание: как распознать и преодолеть кризис в отношениях

Живете с партнером под одной крышей, но чувствуете себя одиноко?

VOICE
Екатерина Борисова: «BIM — это больше чем проектирование» Екатерина Борисова: «BIM — это больше чем проектирование»

Как BIM-проектирование помогает избежать ошибок в документации и сократить сроки

РБК
Куда вложить деньги, чтобы они приносили прибыль Куда вложить деньги, чтобы они приносили прибыль

Варианты для инвестиций и пассивного дохода

VC.RU
Лимфома, удар ножом, ВИЧ и вера: почему чемпионы уходили из спорта и как возвращались Лимфома, удар ножом, ВИЧ и вера: почему чемпионы уходили из спорта и как возвращались

Как величайшие спортсмены уходили на пенсию?

Forbes
Философия зрения: вчера, сегодня, завтра Философия зрения: вчера, сегодня, завтра

Философия зрения начинается там, где мы перестаем доверять видимому

Знание – сила
ДНК всемогущая ДНК всемогущая

Можно ли узнать все о своем происхождении благодаря генетическим исследованиям?

Grazia
Диана Милютина о главной роли в «Чистых», Театре Ленсовета и работе в кино Диана Милютина о главной роли в «Чистых», Театре Ленсовета и работе в кино

Вся школа жизни, все драки со старшим братом, мне это тоже закалило характер

Коллекция. Караван историй
Почему мы ездим на электро, а не на био: кто придумал моду на электромобили Почему мы ездим на электро, а не на био: кто придумал моду на электромобили

Почему Nissan в нулевые как проклятый пахал именно над электромобилем Leaf?

ТехИнсайдер
Новая уникальная антилопа Азии Новая уникальная антилопа Азии

Уникальные саолы — редкие "единороги" из горных лесов Вьетнама

Знание – сила
Бегом-бегом: 6 секретов, как сэкономить время и везде успеть Бегом-бегом: 6 секретов, как сэкономить время и везде успеть

Как научиться трезво оценивать свой список задач и успевать намного больше?

Psychologies
На пробу На пробу

Как диагностировать туберкулез?

Лиза
К звёздам К звёздам

За унылым названием «гермообъект» стоит история прототипа межпланетного корабля

Наука и техника
Почему нужно есть орехи? Ученые доказали, что орехи снижают риск деменции! Почему нужно есть орехи? Ученые доказали, что орехи снижают риск деменции!

Чем орехи полезны для здоровья мозга?

ТехИнсайдер
Топ запрещенок 2024: чего не должно быть в современной рекламе Топ запрещенок 2024: чего не должно быть в современной рекламе

Какие правила следует соблюдать, если вы хотите сделать успешную рекламу?

Inc.
Инфернальный Хью Грант, Пингвин Фаррелл и другие внезапные злодейские роли известных актеров Инфернальный Хью Грант, Пингвин Фаррелл и другие внезапные злодейские роли известных актеров

Актеры, которые отважились сменить амплуа и сыграть отрицательных персонажей

СНОБ
Get ready with me: в чем смысл тренда и почему люди показывают, как готовятся выйти из дома Get ready with me: в чем смысл тренда и почему люди показывают, как готовятся выйти из дома

Почему видеоролики, в которых блогеры одеваются, становятся вирусными?

Psychologies
Раздавили бы камни трилитона деревянные катки? Раздавили бы камни трилитона деревянные катки?

Насколько большое бревно нужно под вес камней трилитона Баальбека – 800 т.?

Наука и техника
Открыть в приложении