Зачем в России занялись кубитами на холодных атомах и ионах

N+1Наука

Квантовое преследование

Зачем в России занялись кубитами на холодных атомах и ионах

Александр Дубов при участии Ильи Ферапонтова

В гарвардском квантовом симуляторе на холодных атомах 256 кубитов. В российском квантовом симуляторе на холодных атомах — один. Десятикубитный квантовый вычислитель компании Honeywell на ионах — один из лидеров среди всех квантовых компьютеров вообще. В российских квантовых компьютерах на ионах — кубит тоже один. Будет лучше, говорят собеседники N + 1.

Полвентиля

В 1995 году физики из Национального института стандартов и технологий (NIST) под началом Дэвида Уайнленда превратили ион бериллия в простейший логический элемент квантового компьютера — вентиль контролируемого отрицания CNOT. Для работы этого вентиля нужно два кубита: состояние одного может меняться или не меняться в зависимости от состояния второго. В качестве управляющего кубита ученые использовали механические колебания самого иона, а в качестве управляемого — состояния электрона, прыгающего между энергетическими уровнями.

Таблица вероятностей собственных состояний кубитов в ионе бериллия до (спереди) и после (сзади) работы вентиля CNOT. Состояния управляющего кубита |n〉 обозначены цифрами, состояния управляемого кубита |S〉 — стрелками. C. Monroe et al. / Physical Review Letters, 1995

Один изолированный ион может поработать сразу двумя кубитами, но дальше такой трюк уже не пройдет. Если объединять много ионов в квантовый процессор, то состояния электронов можно оставить в роли кубитов, а вот механические колебания ионов придется потратить на их связь между собой. Саму схему вентиля CNOT на ионах за полгода до этого придумали Игнасио Сирак и Петер Цоллер. Группа Уайнленда собрала полвентиля — но и этого оказалось достаточно, чтобы запустить гонку квантово-вычислительных платформ и заодно сделать через 17 лет Уайнленда нобелевским лауреатом. Когда физик приехал в Стокгольм забирать свою премию, модель Изинга — самую простую и самую подходящую для квантового моделирования систему — обсчитывали на квантовом симуляторе уже из девяти ионов.

Гонка на счетах

Конечно, кубиты придумал не Уайнленд и не Сирак с Цоллером. О возможности квантовых вычислений всерьез заговорили после того, как Ричард Фейнман в 1981 году оценил, какие ограничения при моделировании физических явлений есть у классических компьютеров, что делать, если нужно смоделировать квантовую задачу и что мог бы представлять из себя квантовый компьютер. Квантовых частиц, с которыми в 80-е могли управиться экспериментаторы, уже было немало: электроны, атомные ядра, ионы, фотоны, многочисленные квазичастицы — богатый выбор материала для кубита.

Но проще всего в начале 1990-х было собрать кубит из запчастей к атомным часам, которые начали производить на продажу еще в 50-е годы. Стандарт измерения времени уже двадцать лет как был привязан к электронным переходам в сверхтонкой структуре атома цезия. Атомные часы считали секунды при помощи системы лазерного охлаждения атомов, оптического резонатора и точного спектрометра. Лазерные лучи надежно фиксировали — «охлаждали» — частицы в заданном месте, а спектроскопические методы позволяли работать с квантовым состоянием электронов в них. Естественно, у Уайнленда в метрологическом институте нашлось все необходимое для того, чтобы поместить в лазерную ловушку охлажденный ион и считать его состояние.

А вот на то, чтобы из перепрофилированных атомных часов сделать, наконец, вычислитель, потребовалось еще восемь лет.

Схема ионной ловушки Пауля, состоящей из кольца в форме гиперболоида вращения (относительно оси z) и двух колпаков с гиперболической поверхностью (сверху и снизу). Вольфганг Пауль / Нобелевская лекция по физике / Успехи физических наук, 1990
Механическая модель ионной ловушки. Седловидная поверхность — потенциал в ловушке, а вращающийся в центре шарик — модельный ион. Вольфганг Пауль / Нобелевская лекция по физике / Успехи физических наук, 1990

Ионная логика

Полноценный двухкубитный вентиль CNOT по схеме Сирака–Цоллера сделали на ионах кальция в 2003 году австрийские физики. К этому моменту далеко впереди были квантовые компьютеры, работающие не на электронных спинах, а на ядерных. В ЯМР-компьютерах начала XXI века было уже целых семь кубитов, и они даже могли что-то посчитать: например, разложить 15 на простые множители. Однако ЯМР-платформа тогда же и заглохла на обочине — стало ясно, что масштабировать эту схему невозможно. Реальные конкуренты к старту только готовились.

Наработки по взаимодействию ЯМР-кубитов, впрочем, пригодились в ионных компьютерах. В 2001 году американские физики показали, как можно управлять взаимодействием двух ионных кубитов, используя последовательность лазерных импульсов, популярную при работе с ядерными спинами — ее-то австрийские ученые и реализовали.

Именно эту работу в беседе с N + 1 называет настоящим стартом ионной платформы Николай Колачевский, директор Физического института имени Лебедева, где сейчас тоже занимаются кубитами на ионах. «Первая теоретическая работа о двухкубитной операции появилась в 95-ом году. А как ее реализовать, продемонстрировали вообще только в 2001-ом. То есть на самом деле, на данный момент всей этой истории — лет двадцать».

По схеме, предложенной в 2001 году и реализованной на ионах кальция в 2003-м, взаимодействуют ионные кубиты в нынешних ионных квантовых компьютерах. При помощи системы лазеров два произвольных иона в цепочке превращают в квантовый осциллятор, а по схеме Сирака–Цоллера внешнее, колебательное квантовое состояние ионов запутывается с внутренним, электронным.

Матрица операции контролируемого отрицания. Первый кубит — управляющий, второй — управляемый. Ferdinand Schmidt-Kaler et al. / Nature, 2003
Измеренные вероятности собственных состояний двух ионных кубитов с включенным и выключенным вентилем CNOT. Ferdinand Schmidt-Kaler et al. / Nature, 2003

сверхпроводниках, так делать нельзя. Второй плюс заключается в том, что эти ионы довольно легко физически перемещать в пространстве. Компания Honeywell делает это на чипе с помощью планарных технологий. Они могут менять ионы местами, не нарушая при этом когерентность. У них не очень длинные ионные цепочки, и в них они умеют ионы переставлять фактически произвольным образом. Любой с любым».

В поисках лидера

Во конце 1990-х века лидер гонки был как будто бы ясен — квантовые компьютеры на ЯМР. Когда в начале XXI века их перспективы оказались туманными, одновременно с ионными компьютерами начали активно развиваться и остальные платформы. В 1999 году сделали первый прототип сверхпроводящего кубита. В 2001-м — придумали, как приспособить линейную оптику для квантовых вычислений, и предложили использовать в качестве кубитов ядерные спины около дефектов в кристаллической структуре алмаза.

К середине 2021 года в гонке участвуют больше десятка платформ, которые работают на совсем разных носителях: дефектах в алмазах, электронах в квантовых точках, джозефсоновских вихрях, трансмонах, майорановских фермионах. В России первый кубит — сверхпроводниковый — сделали в 2015 году, а сейчас моделируют фотонный транспорт уже на пятикубитном вычислителе.

К концу 2010-х годов кубиты на джозефсоновских контактах казались абсолютными лидерами. Они стоят в устройствах компании IBM, квантовых компьютерах Google, в вычислителях D-Wave на основе квантового отжига. Из крупных компаний, выпускающих квантовые компьютеры на рынок, только Honeywell и IonQ делают устройства на ионных кубитах, а не сверхпроводниковых.

Квантовый вычислитель — общее название для всех систем управляемых квантовых объектов, в которых можно задавать и считывать их квантовое состояние для решения вычислительных задач.

Квантовый компьютер — вычислитель, на котором можно выполнять квантовые алгоритмы, превращая кубиты в нужные логические вентили. В зависимости от архитектуры, компьютеры могут отличаться по универсальности, но все предназначены для решения сравнительно широкого набора задач.

Специализированный квантовый вычислитель — квантовая система из связанных кубитов, на которой можно выполнить конкретный алгоритм. Такие вычислители всегда предназначены для очень узкого класса задач. Например, системы D-Wave, которые работают на принципе квантового отжига, подходят для единственного подкласса задач оптимизации.

Квантовый симулятор — квантовый вычислитель, в котором система кубитов моделирует реальную физическую систему, например магнетик или сверхпроводник. В такой системе есть взаимодействие между кубитами, но нет выстроенных логических цепей. С помощью квантовых симуляторов можно предсказывать физические свойства квантовых систем.

Программируемый квантовый симулятор — промежуточный вариант квантового вычислителя между компьютером и симулятором. В процессе работы программируемого квантового симулятора можно менять квантовое состояние некоторых кубитов. Это увеличивает число систем, доступных для моделирования, и делает вычислитель более универсальным.

Ионная ловушка для программируемой квантовой платформы Honeywell. Honeywell

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Почему исчезла цивилизация индейцев Майя Почему исчезла цивилизация индейцев Майя

Почему процветающая цивилизация Майя рухнула

Популярная механика
Степняки начали пить молоко пять тысяч лет назад Степняки начали пить молоко пять тысяч лет назад

Ученые нашли молочные белки в зубном камне представителей ямной культуры

N+1
Как отличить настоящее вино от подделки Как отличить настоящее вино от подделки

Как не наткнуться на фейковое вино

GQ
Филология протеста Филология протеста

Татьяна Алешичева о «Кафедре», университетской комедии о новой этике

Weekend
Родина воды Родина воды

В названии Твери слышен плеск

Seasons of life
Ситуация рода Ситуация рода

Психолог Ирина Млодик о новом отношении к зрелости и ее возможностях

Seasons of life
Система разгрузочных дней: так ли они эффективны Система разгрузочных дней: так ли они эффективны

Разгрузочные дни – отличный способ держать себя в форме

GQ
Поступь конца света: почему ученые говорят об опасности нового массового вымирания? Поступь конца света: почему ученые говорят об опасности нового массового вымирания?

Массовое вымирание – событие, которое сопровождается узнаваемыми явлениями

Популярная механика
Российские бренды вышли из пандемии Российские бренды вышли из пандемии

Российская одежная индустрия получила новый импульс для развития

Эксперт
После отпуска: упражнения для тех, кто хочет быстро прийти в форму После отпуска: упражнения для тех, кто хочет быстро прийти в форму

Комплекс упражнений на все тело, чтобы восстановить форму

Cosmopolitan
Насколько полезен шиповник: мнение эксперта Насколько полезен шиповник: мнение эксперта

Шиповник — это не только красивые цветы, но и полезные плоды

РБК
Как пользоваться хайлайтером для лица: пошаговая инструкция Как пользоваться хайлайтером для лица: пошаговая инструкция

Как правильно наносить хайлайтер на лицо?

VOICE
Похитители тел Похитители тел

Из цикла произведений неизвестных авторов – «Похитители тел» Дмитрия Волкова

Esquire
Художник по металлу: как Поль Арзен научил мир видеть прекрасное Художник по металлу: как Поль Арзен научил мир видеть прекрасное

Большинству знатоков автомобилей фамилия Арзен практически ни о чем не говорит

Вокруг света
«Людей не надо выбрасывать на помойку». Иван Вырыпаев — о детях и Детских деревнях SOS «Людей не надо выбрасывать на помойку». Иван Вырыпаев — о детях и Детских деревнях SOS

Режиссер Иван Вырыпаев — что такое настоящая семья и как ее построить

СНОБ
Танцы с пиками Танцы с пиками

Как Эйзенштейн планировал оправдать Сталина, а в результате его обличил

Weekend
Баловень судьбы: каким мы запомним Жан-Поля Бельмондо Баловень судьбы: каким мы запомним Жан-Поля Бельмондо

Рассказываем о наследии великого французского актера Жан-Поля Бельмондо

Forbes
Грегор Макгрегор: аферист, который придумал собственную страну и стал мультимиллионером после продажи ее земель Грегор Макгрегор: аферист, который придумал собственную страну и стал мультимиллионером после продажи ее земель

Грегор Макгрегор убедил сотни людей в том, что он правитель райской страны

Популярная механика
Фаберже — инструмент капиталиста Фаберже — инструмент капиталиста

Аукционный дом Christie’s готов зафиксировать новые рекорды цен

Forbes
Fix Price для кофе Fix Price для кофе

Как бывший топ-менеджер открыл сеть кофеен с фиксированными ценами

Forbes
Восстановить близость Восстановить близость

Как делить постель после измены партнера?

Psychologies
Топ-5 самых сексуальных злодеек в видеоиграх Топ-5 самых сексуальных злодеек в видеоиграх

Рассказываем об антагонистках, которым хочется сдаться в плен

Maxim
Кто открыл ажиотажные чайные в Москве на деньги племянника «короля недвижимости» Кто открыл ажиотажные чайные в Москве на деньги племянника «короля недвижимости»

Чайная, в которую вложился племянник миллиардера Года Нисанова Эрвин

Forbes
Как понимать Как понимать

Для тех, кто пока не научился понимать Серебренникова

Esquire
Зачем люди стоят на гвоздях Зачем люди стоят на гвоздях

Почему стояние на гвоздях вдруг стало таким популярным?

Psychologies
Родись, страдай, умри, повтори: какой получилась игра Deathloop Родись, страдай, умри, повтори: какой получилась игра Deathloop

Deathloop — игра про киллера, попавшего во временную петлю

Esquire
Чего не стоит делать, если вам изменяют Чего не стоит делать, если вам изменяют

Вещи, которые точно не стоит делать, узнав об измене партнера

Psychologies
Этот предприниматель учился бесплатно в 4 странах  ― как повторить его опыт Этот предприниматель учился бесплатно в 4 странах  ― как повторить его опыт

Образование предпринимателю не нужно, а если и нужно, то лучшее и дорогое?

Inc.
5 признаков опытного манипулятора 5 признаков опытного манипулятора

Моменты, которые могли бы вас насторожить и предостеречь: рядом манипулятор

Psychologies
Лайхаки для занятий бегом от Риз Уизерспун и Гордона Рамзи Лайхаки для занятий бегом от Риз Уизерспун и Гордона Рамзи

Советы известных людей о том, как они начали бегать и почему не бросили

РБК
Открыть в приложении