«Искусственный интеллект в медицине»
Машинное обучение все чаще находит применение в медицине. В обозримом будущем алгоритмы не заменят врачей, но помогут им с рутинной работой и компенсируют недостатки людей, которым свойственно уставать, лениться и пытаться упростить себе жизнь. В книге «Искусственный интеллект в медицине: Как умные технологии меняют подход к лечению» (издательство «Альпина Паблишер»), переведенной на русский язык Александром Анваером, профессор молекулярной медицины, кардиолог и исследователь Эрик Тополь рассказывает об алгоритмах, меняющих современную диагностику и лечение. N + 1 предлагает своим читателям ознакомиться с отрывком, в котором рассказывается, как машинное обучение упрощает исследование основ геномных болезней.
Важнейшие открытия
Огромные массивы данных, которые имеются на сегодня в биологии и медицине, настоятельно требуют внедрения машинного обучения и искусственного интеллекта. Возьмем для примера «Атлас ракового генома» (TCGA), содержащий многомерные биологические данные, охватывающие множество «-омик» — геномику, протеомику и так далее. Всего в атласе содержится более 2,5 петабайт информации, извлеченной из данных по более чем 30 тысячам пациентов. Ни одному человеку не под силу просмотреть и проанализировать все эти данные. Онколог Роберт Дарнелл, работающий в настоящее время на факультете нейробиологии Рокфеллеровского университета, заметил: «Мы, как биологи, можем лишь указать, например, на биологические основы аутизма. Мощь машины, которая может задать триллион вопросов там, где мы успеваем задать всего десять, меняет правила игры».
Правда, в отличие от тех осязаемых и зримых изменений, которые уже сегодня ощущают в связи с применением искусственного интеллекта специалисты таких отраслей медицины, как рентгенология и патологическая анатомия (то есть там, где требуется распознавание сложных образов), наука стоит особняком: искусственный интеллект пока не посягает на статус-кво ученых, ИИ может им только помочь. Как выразился Тим Аппенцеллер в материале для журнала Science, искусственный интеллект — это пока «подмастерье» ученых. Но искусственный интеллект уже может предложить им весьма ощутимую помощь: на обложке одного из номеров Science 2017 г. так и было написано — «Искусственный интеллект преображает науку». Оказывается, ИИ не только «породил нейробиологию» (как мы скоро сами убедимся), но и «перезагрузил процесс открытия». В самом деле, Science разглядел там, за горизонтом, нечто по-настоящему новое — «перспективу полностью автоматизированной науки», и это, по мнению авторов статьи, означало, что «неутомимый ученик очень скоро может стать равноправным коллегой».
ИИ-«коллега» — это, на мой взгляд, дело довольно далекого будущего, но его проникновение в науку происходит быстрыми темпами, независимо от того, сможет ли он когда-нибудь потеснить ученых. И действительно, ИИ в приложении к биологическим наукам развивается быстрее, чем в приложении к здравоохранению. В конце концов, данные фундаментальной науки далеко не всегда требуют валидации на̀ основании клинических испытаний. Фундаментальная наука не нуждается в одобрении со стороны медицинского сообщества, ее не нужно внедрять в практику, она не обязана соответствовать строгим требованиям регулирующего законодательства. Впрочем, несмотря на то, что наука не всегда способна пробиться в клиническую практику, в конечном счете все передовые достижения — будь то открытие новых, более эффективных лекарств или выявление биохимических механизмов, отвечающих за здоровье и болезни, — так или иначе повлияют на практикующих медиков. Давайте посмотрим, чего же добился наш «подмастерье».
Биологичекие «-омики» и рак
В геномике и биологии искусственный интеллект — незаменимый партнер ученых, так как машины обладают зрением, способным различать вещи, недоступные человеческому глазу, и просеивать огромные массивы данные, непостижимые человеческим разумом.
Богатая данными геномика представляет собой идеальное поле приложения компьютерных методов. Каждый из нас — это сокровищница генетических данных, в диплоидном (от отца и матери) хромосомном наборе каждого из нас содержится 3,2 млрд пар различных сочетаний нуклеотидов: А (аденин), Ц (цитозин), Г (гуанин) и Т (тимин), причем 98,5 процента этого генома не кодирует никаких белков. То есть спустя 10 с лишним лет после полной расшифровки человеческого генома функция всего этого материала остается непонятной. Одна из первых попыток глубокого обучения, касающегося генома, Deep-SEA, была посвящена выяснению функции элементов, не принимающих участия в кодировании белков. В 2015 г. Цзянь Чжоу и Ольга Трояновская из Принстонского университета опубликовали алгоритм, который после обучения на основе данных каталогизации десятков тысяч нуклеотидов, не кодирующих белки, оказался способным предсказать, как именно последовательности ДНК взаимодействуют с хроматином. Хроматин состоит из крупных макромолекул, которые обеспечивают «упаковку» ДНК для хранения, а также помогают развертывать ее нить для транскрипции РНК и (в конечном счете) для трансляции белков. Таким образом, взаимодействие между хроматином и последовательностями ДНК играет важную регуляторную роль. Сяохуэй Се, специалист по ИТ из Калифорнийского университета в Ирвайне назвал это «важной вехой на пути приложения глубокого обучения к геномике».