Физики разобрались с квазибрэгговской дифракцией атомного конденсата на оптических решетках
Французские физики теоретически и экспериментально описали то, как зависит характер квазибрэгговской дифракции атомного конденсата на оптических решетках со сложными временными параметрами. Они показали, что, настраивая правильным образом временную зависимость амплитуды светового импульса и частотной отстройки лазерных пучков, можно добиться эффективного дифракционного разделения атомов с выбранной импульсопередачей. Исследование опубликовано в Physical Review A.
Дифракция света сыграла важную роль в становлении классической оптики. Когда стало понятно, что обычная материя тоже обладает волновыми свойствами, физики начали активно изучать дифракцию частиц на периодических структурах, в первую очередь кристаллических решетках. Однако периодичность можно получить по-другому: для этого достаточно создать стоячую волну света. Подобным образом работают акустооптические модуляторы, в которых свет, наоборот, дифрагирует на звуковой стоячей волне.
Капица с Дираком были первыми, кто предположил, что взаимодействие электронов со световыми стоячими волнами (физики часто называют их оптическими решетками) должно приводить к их дифракции. Правда из-за слабости электрон-фотонного взаимодействия экспериментальное подтверждение этой идеи произошло лишь в 2001 году. Атомы же подходят на эту роль гораздо лучше из-за наличия у них внутренней энергетической структуры, поэтому атомную дифракцию на свете увидели уже в конце 70-х годов.
Расщепление атомного пучка на две или более когерентных частей открыло дорогу к созданию сверхчувствительных атомных интерферометров, которые позволяют уловить тончайшие различия в условиях, в которых оказываются атомные траектории (например, разную гравитацию). Вскоре физики поняли, что чем выше будет порядок дифракции, который измеряется в разнице импульсов атомов, идущих по разным плечам (обычно она задается через количество фотонных импульсов), тем дальше будут разнесены траектории и тем точнее будет