AlphaFold 3 — модель для предсказания точной структуры белков

N+1Hi-Tech

Представлена модель для предсказания структуры белков AlphaFold 3

Она работает на сервере с квотой и не разрешает изучать потенциальные лекарства

Олег Лищук

c436a7ca73b176ac39ea89507bbe8e66.gif
Предсказанная моделью структура комплекса белка 8AW3 (голубой) с РНК (лиловый) и двумя ионами (желтый). Реальная структура показана серым цветом. Google

Компании Google DeepMind и Isomorphic Labs, принадлежащие Alphabet, представили AlphaFold 3 — новую версию модели на основе машинного обучения для предсказания точной структуры белков и их взаимодействий друг с другом и другими веществами. По заявлению разработчиков, она стала первой, превзошедшей по точности физические методы исследования. Статья о модели принята для ускоренной публикации в Nature. Кроме того, о разработке рассказывают редакционные подкаст и статья, а также пресс-релизе Google.

Знание структуры белков необходимо в самых разных областях биологии — от понимания фундаментальных механизмов функционирования живых организмов до описания патогенеза болезней и рациональной разработки лекарств. До появления машинного обучения ее определение представляло собой крайне сложную, трудоемкую и затратную задачу. Ситуация начала меняться в 2018 году, когда сотрудники DeepMind представили первую высокоэффективную модель AlphaFold 1, которая сразу победила в конкурсе CASP. Вторая, более эффективная, версия AlphaFold 2 увидела свет в 2020 году и до сих пор служила стандартом в исследованиях по определению белковых структур. С ее помощью были разработаны вакцины от малярии, различные лекарства, ферменты и многое другое.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Открыть в приложении