Сибирский КОТ, или Прототип термоядерного реактора нового поколения
Во Франции за десятки миллиардов евро конструируют гигантский демонстратор возможности использования термоядерной энергии ITER (International Thermonuclear Experimental Reactor). Физики в Сибири и в США строят у себя установки поменьше.
Промышленный реактор, созданный на основе ITER, когда-нибудь заменит человечеству углеводородное топливо. В прошлом году в Институте ядерной физики СО РАН в Новосибирске введена в эксплуатацию новая экспериментальная установка КОТ — компактный осесимметричный тороид. Машина представляет собой небольшой цилиндр с горячей плазмой внутри вакуумной камеры, где при ста миллионах градусов должны происходить термоядерные реакции с выделением энергии.
Примером природного термоядерного котла служит Солнце. Внутри него непрерывно происходят ядерные реакции «горения» водорода и превращения его в гелий, в результате выделяется колоссальная энергия. В Солнце удержание вещества происходит за счет его огромной гравитации, поэтому повторить в лаборатории такой сценарий невозможно. В земных условиях удерживать плазму достаточное время для протекания термоядерных реакций реально с помощью магнитного поля, создаваемого витками с током. Только, в отличие от металла, плазма не притягивается магнитом, а отталкивается от него. Это существенно усложняет задачу физикам: плазма старается покинуть область удержания и погибнуть на стенках вакуумной камеры еще до начала протекания термоядерных реакций.
Проблемы удержания и стабилизации плазмы — это ключевые задачи для получения термоядерной энергии. Поведение плазмы можно рассчитать только для немногих простых случаев. Дело в том, что, в отличие от газа, плазма имеет гораздо больше степеней свободы из‑за магнитных и электрических полей, влияющих на движение отдельных частиц. Поэтому поведение плазмы слабо предсказуемо и требует больших вычислительных мощностей. Чтобы просчитать всего лишь одну тысячную долю секунды из жизни плазмы в реакторе (проследить, куда она полетела и как погибла), сегодня требуется месяц работы обычного компьютера. Вот и ответ на вопрос, почему физика плазмы до сих пор является фундаментальной наукой, а не прикладной. Выход только один — эксперименты, а это очень затратно.
В настоящее время множество научных коллективов во всем мире усилено занимаются работами в области УТС (управляемый термоядерный синтез). Сюда относятся крупные международные коллективы и стартапы по теме открытых магнитных систем, в том числе в ИЯФ СО РАН, где работают несколько экспериментальных установок и ведутся работы по физике плазмы. Тут изучают поведение стенок вакуумной камеры термоядерного реактора при интенсивном нейтронном потоке. На установке КОТ проводят эксперименты и создают базу данных для установки следующего поколения. Она должна будет демонстрировать технологии УТС и показать все преимущества открытых магнитных систем. Сильная интернациональная команда ученых работает на коммерческой установке C‑2W/ Norman компании TAE Technologies в Калифорнии. С этой компанией ИЯФ давно и успешно сотрудничает. Установка КОТ и американская C‑2W схожи по физическому принципу, заложенному в основу формирования и удержания плазмы.
Какие бывают термоядерные реакторы
Реакторы типа «токамак» — это замкнутые тороидальные камеры с магнитными катушками. В установках типа «токамак», в частности, в крупнейшей в мире установке ITER, горячая плазма находится в замкнутой камере, поэтому выделение энергии происходит с минимальными потерями. Но такая конструкция имеет массу ограничений по характеристикам магнитного поля и требует огромных вложений. Температура плазмы внутри камеры составляет более ста миллионов градусов, и даже самые огнеупорные материалы сверхпроводящей обмотки начинают испаряться и загрязнять плазму, которая из‑за этого меняет параметры, что приводит к затуханию процесса.
Небольшая установка КОТ отличается от ITER не только своими скромными размерами, но и всей конструкцией. В ней плазма находится не в замкнутом пространстве: отработала — и вышла. В такой системе намного меньше нерешаемых вопросов и проблем, чем в замкнутой. Установки открытого типа похожи на бутылку бездна с двумя горлышками, направленными в разные стороны. После выделения энергии отработанная плазма свободно вытекает из магнитной ловушки через симметрично расположенные горлышки. А в камеру вместо отработанного топлива поступает новая порция сжатого газа — смеси дейтерия и трития. Для удачной эксплуатации важно лишь добиться, чтобы плазма горела как можно дольше и стабиль‑ нее. Сейчас коллектив сибирских ученых работает над проблемой нагрева плазмы и ее стабилизации.