О современном состоянии нейтринных, а также протонных исследований

Наука и жизньНаука

Нейтрино. Познание Вселенной продолжается

Разработчик и многолетний руководитель установки «Троицк ню-масс» академик Владимир Михайлович Лобашёв (второй справа в первом ряду) со своей командой. Фотография 2010 года. Фото: ИЯИ РАН

С того момента, как Вольфганг Паули в 1930 году, спасая закон сохранения энергии в микромире, выдвинул гипотезу о существовании нейтрино, эта неуловимая частица остаётся на переднем крае физических исследований. Недаром академик Виталий Лазаревич Гинзбург, обсуждая вопрос о том, какие проблемы физики и астрофизики представляются на пороге ХХI века особенно важными и интересными, среди прочих указал нейтринную физику и астрофизику (см. «Наука и жизнь» №№ 11, 12, 1999 г.). И первые два десятилетия нового века не обманули ожидания учёных. Исследования нейтрино получили сразу две Нобелевские премии: в 2002 году — за регистрацию космических нейтрино, а в 2015-м — за экспериментальное доказательство существования осцилляций нейтрино (см. «Наука и жизнь» № 12, 2002 г. и № 11, 2015 г.). Работы продолжают набирать ход, строятся новые нейтринные обсерватории, расширяется международное сотрудничество. Журнал «Наука и жизнь», держа руку на пульсе, регулярно рассказывал на своих страницах о нейтрино (см., например, №№ 2, 3, 2000 г. и №№ 3, 4, 2014 г.). Из последнего можно упомянуть открытие российскими астрофизиками рождения космических нейтрино высоких энергий блазарами (см. № 4, 2021 г.). В нашей стране исследования нейтрино ведутся в основном в Институте ядерных исследований РАН (ИЯИ), который занимается этим уже полвека, с момента своего образования в 1970 году. В распоряжении института находятся уникальные установки в Баксанском ущелье (см. «Наука и жизнь» № 9, 2019 г.), на озере Байкал и в подмосковном Троицке. Кроме того, ИЯИ участвует в целом ряде крупнейших международных нейтринных проектов.

О современном состоянии нейтринных, а также протонных исследований рассказывает директор Института ядерных исследований РАН, доктор физико-математических наук Максим Либанов. Беседу ведёт Наталия Лескова.

Максим Валентинович Либанов. Фото Наталии Лесковой

— Максим Валентинович, для чего вообще нужны нейтринные исследования?

— Существование нейтрино было предсказано ещё в 30-х годах прошлого века. Причём предсказано с осторожностью, в том смысле, что тогда казалось проще допустить нарушение закона сохранения энергии и импульса, чем предположить существование новой частицы. Поэтому, когда при изучении бета-распадов ядер выяснилось, что энергия не сохраняется, ведущие физики того времени, например, Нильс Бор, уже всерьёз начали обсуждать возможность нарушения закона сохранения энергии. Но Паули в открытом письме высказал предположение, что причиной расхождений по энергии при бета-распаде может быть образование новой частицы, не имеющей заряда. Он назвал её нейтроном, однако вскоре название «нейтрон» было присвоено другой, только что открытой частице. Название «нейтрино» придумал Ферми. Обнаружить нейтрино оказалось гораздо сложнее, чем любую заряженную частицу — электрон, позитрон, протон или даже также не имеющий заряда нейтрон.

Окончательно нейтрино было открыто в 50-е годы прошлого века, после чего в самых разных направлениях начала развиваться нейтринная тематика. Стало ясно, что практически во всех известных нам ядерных реакциях участвуют нейтрино. В частности, нейтрино образуются в ядерных реакторах и в термоядерных реакциях на Солнце. Представьте: каждую секунду через нас пролетает сотни триллионов солнечных нейтрино. Но они взаимодействуют настолько слабо, что их очень сложно зарегистрировать.

Несмотря на свою неуловимость, эти частицы дают нам представление о том, как устроена физика за пределами Стандартной модели, которая считается в каком-то смысле законченной, в особенности после открытия бозона Хиггса в 2013 году.

— Но почему «в каком-то смысле»? Что-то мешает ей стать окончательно законченной?

— Да. А именно — один спорный момент: согласно этой модели, нейтрино не может иметь массу. Однако обнаружение осцилляции нейтрино, или его способности переходить из одной формы в другую, требует того, чтобы нейтрино было массивным. Очевидно, что уже по одной этой причине Стандартная модель неполна и её надо расширять. Такую возможность даёт изучение нейтрино.

В Стандартной модели помимо хорошо изученного электрона присутствуют ещё два его аналога, отличающиеся от него только массой, но имеющие такой же электрический заряд и другие характеристики, — мюон и тау-лептон. С каждой из этих заряженных частиц может взаимодействовать нейтрино. Но нейтрино, которое взаимодействует, например, с электроном, не может вступить во взаимодействие с тау-лептоном. Таким образом, в Стандартной модели присутствуют три типа нейтрино: электронное, мюонное и тау-нейтрино. В различных реакциях они появляются только вместе со своим заряженным партнёром.

Нейтрино, рождающиеся в термоядерных реакциях на Солнце, являются электронными. Мы знаем, сколько энергии выделяет наше светило, следовательно, можем прикинуть, сколько оттуда вылетает нейтрино, а значит, можем попытаться зарегистрировать их на Земле. Так вот, регистрируя на Земле электронные нейтрино, испущенные Солнцем, физики выяснили, что их примерно вдвое меньше, чем ожидалось.

Установка «Троицк ню-масс». В настоящее время на установке проводятся эксперименты по поиску стерильных нейтрино в диапазоне масс до 5—7 кэВ. Фото: ИЯИ РАН

— Куда же они подевались?

— Наиболее консервативный ответ заключается в том, что на Земле мы фиксируем нейтрино не всех энергий. Действительно, большинство ранних экспериментов могло ловить солнечные нейтрино только с достаточно большой энергией. Между тем, бо́льшая часть солнечных нейтрино имеет меньшую энергию. Поэтому долгое время считалось, что мы просто не видим нейтрино с низкой энергией.

Многие экспериментальные группы стремились измерить поток нейтрино с низкой энергией. Точку в этом вопросе поставил галлий-германиевый нейтринный телескоп у нас в Баксанской нейтринной обсерватории. Идея эксперимента, предложенная членом-корреспондентом РАН Вадимом Алексеевичем Кузьминым, заключается в следующем: нейтрино от Солнца прилетают на Землю, слабо взаимодействуют с ядрами галлия, ядра галлия переходят в ядра германия, и можно посчитать их количество.

— Сколько же таких ядер насчитали?

— Цифры впечатляют: из 50 тонн галлия за месяц выделяется 15 ядер германия. А должно быть, согласно подсчётам, 30. Это даже не иголка в стоге сена.

— Почти по Маяковскому: изводишь единого ядрышка ради тысячи тонн руды.

— Именно так. Галлий-германиевый эксперимент знаменит тем, что, в отличие от предыдущих, померил практически весь спектр солнечных нейтрино и показал, что консервативный ответ не проходит, и вопрос дефицита солнечных нейтрино встал со всей остротой.

Другое решение проблемы нехватки нейтрино основано на гипотезе, выдвинутой Бруно Понтекорво в 1957 году. Он первым предположил, что есть осцилляции — то есть, в процессе движения нейтрино могут переходить из одного типа в другой. Если это так, то поток электронных нейтрино, рождённых на Солнце, приходит к нам на Землю уже в виде смеси трёх типов нейтрино. До недавнего времени все эксперименты по регистрации солнечных нейтрино, включая галлий-германиевый, могли поймать только электронные нейтрино.

В 1999 году в Садбери в Канаде был запущен эксперимент SNO (Sudbury Neutrino Observatory), который смог поймать не только электронные, но и мюонные и тау-нейтрино. Измеренный полный поток нейтрино практически полностью совпал с предсказанным Солнечной моделью. За открытие осцилляций Артур Макдональд, руководитель эксперимента SNO, и Такааки Кадзита, руководитель эксперимента Камиоканде (Япония), в 2015 году получили Нобелевскую премию. Руководитель нашего галлий-германиевого эксперимента, член-корреспондент РАН Владимир Николаевич Гаврин, к сожалению, премию не получил. Однако наш эксперимент стал предтечей нобелевского результата. Без него бы, я думаю, ничего не было.

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Рекомендуемые статьи

Сколько можно спать? Сколько можно спать?

Еще несколько сотен лет назад европейцы спали дважды за сутки

Популярная механика
Антиоксиданты в еде и косметике: польза, риски, мнение эксперта Антиоксиданты в еде и косметике: польза, риски, мнение эксперта

Разбираемся, насколько антиоксиданты важны для организма

РБК
Уроки на экваторе Уроки на экваторе

Месяц в деревне в Кении глазами волонтера-учительницы из России

Вокруг света
Полторы комнаты Иосифа Бродского: из ниоткуда с любовью Полторы комнаты Иосифа Бродского: из ниоткуда с любовью

Коммуналку Иосифа Бродского превратили в наполненное воспоминаниями пространство

Seasons of life
Чем грозит слабеющий гольфстрим? Чем грозит слабеющий гольфстрим?

Новые данные, уточняющие поведение Гольфстрима

Наука и жизнь
Форма и функция Форма и функция

Загородный дом в Подмосковье, отличающийся сложными и выразительными формами

SALON-Interior
Красного прилива цвет Красного прилива цвет

О красных приливах бродит по миру множество слухов

Наука и жизнь
«Выстрелил, уехал…»: 7 фактов о самой трусливой самоходке Второй мировой «Выстрелил, уехал…»: 7 фактов о самой трусливой самоходке Второй мировой

История американской «Ведьмы»

Maxim
Васаби, японский хрен или китайская зелёная горчица Васаби, японский хрен или китайская зелёная горчица

Приправа, о которой многие слышали, но мало кто знает, что это такое

Наука и жизнь
Поехали к своим Поехали к своим

Где на Руси хорошо отдохнуть?

Robb Report
Прав ли Галилей? Прав ли Галилей?

Можно ли вращаться по инерции?

Наука и жизнь
Дела сердечные Дела сердечные

6 неочевидных симптомов, которые могут говорить о проблемах с сердцем

Лиза
Кодекс поведения робота Кодекс поведения робота

В чем заключаются ключевые проблемы взаимодействия человека и ИИ

Популярная механика
Ожидание и реальность: как машины выглядели на скетчах и что получилось Ожидание и реальность: как машины выглядели на скетчах и что получилось

Часто серийные машины сильно отличаются от дизайнерских рисунков

РБК
Лучше, чем жизнь Лучше, чем жизнь

Традиционно самыми ресурсоемкими считались спецэффекты для кино

Популярная механика
Как развить «мышление изобилия» Как развить «мышление изобилия»

Большинство из нас сами загоняют себя в тесные рамки

Psychologies
Верхом на вихре Верхом на вихре

Возможное будущее гражданской авиации

Популярная механика
Прощальный гудок для старой экономики: зачем «Яндексу» банк Прощальный гудок для старой экономики: зачем «Яндексу» банк

Зачем «Яндексу» банк и что он получит с покупкой «Акрополя»

Forbes
«Ты не пройдёшь!» кто ловит космических странников на пути к земле «Ты не пройдёшь!» кто ловит космических странников на пути к земле

Как Юпитер и Сатурн защищают Солнечную систему от непрошенных гостей

Наука и жизнь
Зеленые сказки Зеленые сказки

Самые популярные легенды об экологии: когда добро становится злом

Лиза
Уставшая женщина, на которой держится все: Кейт Уинслет в сериале «Мейр из Исттауна» Уставшая женщина, на которой держится все: Кейт Уинслет в сериале «Мейр из Исттауна»

Почему роль в «Мейр из Исстауна» — одна из лучших в карьере актрисы

Forbes
«В новой экономике ценностью являются личные отношения». Сооснователь Voices Алексей Быстров — о том, как привлек инвестиции от Питера Тиля, о теории тысячи фанатов и проблемах креаторов «В новой экономике ценностью являются личные отношения». Сооснователь Voices Алексей Быстров — о том, как привлек инвестиции от Питера Тиля, о теории тысячи фанатов и проблемах креаторов

Сооснователь Voices Алексей Быстров — о конкуренции с TikTok и креаторах

Inc.
Денис Миллионов: «Нужно быть сильным барменом, но в душе — шеф-поваром» Денис Миллионов: «Нужно быть сильным барменом, но в душе — шеф-поваром»

Денис Миллионов увлекается российскими дикоросами

Bones
Крепко стоят на глиняных ногах Крепко стоят на глиняных ногах

Искусство лепки и обжига из хобби превращается в часть фэшн-индустрии

Vogue
Первомайский свальный грех: история оргий от Древнего Египта до наших дней Первомайский свальный грех: история оргий от Древнего Египта до наших дней

Ничего необычного или нового в оргиях нет

Cosmopolitan
Все просто: сценарий идеального свидания Все просто: сценарий идеального свидания

4 совета о том, как покорить девушку за один вечер

Maxim
Разделяй и властвуй Разделяй и властвуй

Не важно, какого размера квартира, — для комфорта ее надо разделить на зоны

AD
Как выстраивать личные границы в отношениях с родителями? Как выстраивать личные границы в отношениях с родителями?

Почему даже во взрослом возрасте нам бывает непросто общаться с родителями

Psychologies
Дресс-код доступа: по какой теперь «одежке» встречают в приличном обществе Дресс-код доступа: по какой теперь «одежке» встречают в приличном обществе

Толстовка — визитка молодых талантов, кардиган — признак венчурного капиталиста

Forbes
Рост юрского динозавра связали с условиями окружающей среды Рост юрского динозавра связали с условиями окружающей среды

Палеонтологи исследовали гистологические срезы костей раннеюрского динозавра

N+1
Открыть в приложении