Квантовые компьютеры учатся работать с «квантовыми данными»
Ученые Сколтеха показали, что квантовое машинное обучение может применяться для квантовых (а не классических) данных, позволяя устранить свойственный для классических приложений недостаток – низкую скорость работы, а также «закладывая основы для понимания вычислительных аспектов квантовых систем».
В квантовых компьютерах для хранения и использования данных используются эффекты квантовой механики, о которых часто говорят, что они контринтуитивны. Тем не менее, именно благодаря квантовым эффектам квантовые компьютеры смогут намного превзойти по производительности лучшие современные суперкомпьютеры. В 2019 году впервые в мире был продемонстрирован прототип решения, обладающего, по утверждению представителей компании Google, «квантовым вычислительным превосходством».
Квантовые алгоритмы были созданы для решения сложных и масштабных вычислительных задач, которые не под силу обычным компьютерам, в том числе появившихся совсем недавно задач квантового машинного обучения. В числе основоположников квантового машинного обучения − специалисты Лаборатории квантовой обработки информации Сколтеха, которую возглавляет один из авторов опубликованной статьи, профессор Джейкоб Биамонте. «Методы машинного обучения стали мощным инструментом для выявления закономерностей в массивах данных. В квантовых системах формируются нетипичные закономерности, которые, как считается, не могут с той же эффективностью создаваться в классических системах. Неудивительно поэтому, что при решении задач машинного обучения квантовые компьютеры могут превзойти