Физики запутали и измерили два макрообъекта
Двум разным группам ученых удалось экспериментально продемонстрировать квантовые явления в макроскопических механических системах. Одна из них показала, как можно сгенерировать квантовое запутанное состояние и подтвердить его наличие прямым экспериментом; а вторая научилась избегать стандартный квантовый предел в измерениях аналогичной системы. Первая и вторая работы опубликованы в журнале Science.
Наличие приставки «квантовый» в любом термине зачастую отсылает к каким-нибудь очень маленьким, микроскопическим объектам — атомам, фотонам, экситонам. На их основе можно демонстрировать эффекты, которые предсказывает и описывает квантовая механика, и создавать сенсоры и схемы для вычислений или коммуникаций. На самом деле, макроскопические объекты тоже проявляют квантовые свойства, но значительно слабее, чем классические — только тщательные эксперименты могут их выявить.
Именно такие эксперименты провели научные группы из Национального института стандартов и технологий и университета Аалто под руководством Джона Теуфеля (John D. Teufel) и Мики Силланпяя (Mika A. Sillanpää), соответственно. Первая экспериментально продемонстрировала и привела доказательства квантовой запутанности макроскопических объектов (вибрирующих мембран), а вторая исследовала обратное воздействие в квантово-механических измерениях аналогичной системы и нашла способы его избежать.
Обе работы несмотря на разные направления исследования использовали одну и ту же физическую систему — круглую сверхпроводящую алюминиевую мембрану диаметром 10 микрометров и массой 100 пикограмм, которая служит одной из пластин конденсатора. Конденсатор в свою очередь встроен в электрическую цепь и изменение напряжения в цепи приводит к регистрируемым механическим