Физики создали оптическую квантовую батарею на сверхпоглощении
Физики впервые продемонстрировали эффект сверхпоглощения света с помощью большого числа молекул органического полупроводника. Изучая динамику их поглощения методом абсорбционной спектроскопии в режиме накачки-зондирования с фемтосекундным разрешением, авторы показали, что образцы можно считать прототипом квантовой батареи. Исследование опубликовано в Science Advances.
В начале XX века Альберт Эйнштейн, развивая идеи о том, что свет распространяется порциями (квантами), построил полуклассическую теорию резонансного взаимодействия излучения с двухуровневой системой. Он описал три основных процесса: спонтанное излучение, поглощение и вынужденное излучение. Последнее происходит тогда, когда на возбужденный атом налетает фотон и образуется два идентичных световых кванта. Такое умножение света сыграло ключевую роль в изобретении лазера.
Вместе с тем в середине века Дикке теоретически показал, что спонтанное излучение N излучателей может происходить в коллективном режиме за счет конструктивной квантовой интерференции. Интересным было то, что время излучения при этом сокращается в 1/N раз, а пиковая интенсивность увеличивается в N2 раз. Этот эффект, названный сверхизлучением, был впоследствии обнаружен на множестве систем и активно изучается до сих пор. Недавно, например, физики выяснили, что оптоволокно способно поддерживать сверхизлучение двух атомов, разнесенных на расстояние трети миллиметра.
Испускание и поглощение фотонов — это процессы одной природы. Квантовая механика, в свою очередь, обладает симметрией относительно инверсии времени. Это значит, что системы с повышенной скоростью излучения также должны иметь повышенную скорость поглощения. Другими словами, законы физики разрешают эффект сверхпоглощения, который будет обладать теми же характеристиками, что и сверхизлучение. Это значит,