Химики смогли дважды заменить водород на азот в производных этилбензола

N+1Наука

Электричество и свет помогли химикам разорвать углерод-водородную связь дважды

Химики смогли дважды заменить водород на азот в производных этилбензола. Для этого они использовали катализатор, который начинает работать после возбуждения светом и электрическим током. Метод, описанный в Science, поможет проще получать полезные биохимические молекулы.

Егор Длин

Tao Shen / Science, 2021

Химические реакции, способные выборочно разорвать связь углерод-водород и заменить последний на функциональную группу или атом, сравнительно недавно стали популярным направлением органического синтеза. Их принято называть реакциями CH-активации. Несмотря на то, что единичные примеры таких реакций были известны давно, их применимость страдала из-за отсутствия селективности и высокой чувствительности к функциональным группам. Тем не менее реакции этого типа могут сильно упростить получение сложных молекул, особенно биохимических. Особенный интерес в этом направлении вызывают реакции с образованием связи углерод-азот. Это связано с тем, что азот очень часто встречается в биологически активных молекулах и обуславливает их биологическую активность. И, хотя разработано множество методов введения азота в молекулу, большинство из них позволяет сделать это только один раз. При этом многие синтетические задачи требуют введения нескольких азотсодержащих фрагментов. Сложность еще заключается в том, что введение функциональных групп в молекулу зачастую деактивирует соседние положения, что сильно затрудняет возможные манипуляции с ними. На сегодняшний день известно всего несколько подходов к многократной CH-активации.

Один из первых примеров CH-активации: маломобильный атом водорода в ароматическом кольце заменяется на функциональную группу. Wikimedia Commons
Примечательный пример CH-активации: функционализация малоактивной молекулы бензола

Одной из перспективных стратегий для проведения CH-активации является использование электрофотокатализа. Этот процесс заключается в ионизации молекулы катализатора с помощью электродов, полученный ион дополнительно возбуждается с помощью источника света. Полученная частица представляет собой очень эффективный окислитель и помогает оторвать атом водорода от исходной молекулы. Отдав на это энергию своего возбуждения, катализатор возвращается в исходное состояние

Авторизуйтесь, чтобы продолжить чтение. Это быстро и бесплатно.

Регистрируясь, я принимаю условия использования

Открыть в приложении